Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Open Biochem J ; 4: 59-67, 2010 May 18.
Article in English | MEDLINE | ID: mdl-20648216

ABSTRACT

Superoxide generated by human NADPH oxidase 5 (NOX5) is of growing importance for various physiological and pathological processes. The activity of NOX5 appears to be regulated by a self-contained Ca(2+) binding domain (CaBD). Recently Bánfi et al. suggest that the conformational change of CaBD upon Ca(2+) binding is essential for domain-domain interaction and superoxide production. The authors studied its structural change using intrinsic Trp fluorescence and hydrophobic dye binding; however, their conformational study was not thorough and the kinetics of metal binding was not demonstrated. Here we generated the recombinant CaBD and an E99Q/E143Q mutant to characterize them using fluorescence spectroscopy. Ca(2+) binding to CaBD induces a conformational change that exposes hydrophobic patches and increases the quenching accessibilities of its Trp residues and AEDANS at Cys107. The circular dichroism spectra indicated no significant changes in the secondary structures of CaBD upon metal binding. Stopped-flow spectrometry revealed a fast Ca(2+) dissociation from the N-terminal half, followed by a slow Ca(2+) dissociation from the C-terminal half. Combined with a chemical stability study, we concluded that the C-terminal half of CaBD has a higher Ca(2+) binding affinity, a higher chemical stability, and a slow Ca(2+) dissociation. The Mg(2+)-bound CaBD was also investigated and the results indicate that its structure is similar to the apo form. The rate of Mg(2+) dissociation was close to that of Ca(2+) dissociation. Our data suggest that the N- and C-terminal halves of CaBD are not completely structurally independent.

SELECTION OF CITATIONS
SEARCH DETAIL
...