Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Gen Virol ; 104(9)2023 09.
Article in English | MEDLINE | ID: mdl-37665326

ABSTRACT

Like most non-enveloped viruses, CVB1 mainly uses cell lysis to spread. Details of a nonlytic virus transmission remain unclear. Extracellular Vesicles (EVs) transfer biomolecules between cells. We show that CVB1 entry into HeLa cells results in apoptosis and release of CVB1-induced 'medium-sized' EVs (CVB1i-mEVs). These mEVs (100-300 nm) harbour CVB1 as shown by immunoblotting with anti-CVB1-antibody; viral capsids were detected by transmission electron microscopy and RT-PCR revealed CVB1 RNA. The percentage of mEVs released from CVB1-infected HeLa cells harbouring virus was estimated from TEM at 34 %. Inhibition of CVB1i-mEV production, with calpeptin or siRNA knockdown of CAPNS1 in HeLa cells limited spread of CVB1 suggesting these vesicles disseminate CVB1 virions to new host cells by a nonlytic EV-to-cell mechanism. This was confirmed by detecting CVB1 virions inside HeLa cells after co-culture with CVB1i-mEVs; EV release may also prevent apoptosis of infected cells whilst spreading apoptosis to secondary sites of infection.


Subject(s)
Apoptosis , Extracellular Vesicles , Humans , HeLa Cells , Cell Death , RNA, Small Interfering
2.
Int J Mol Sci ; 22(7)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33916195

ABSTRACT

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an ultra-rare disease for which there are currently no validated outcome measures for assessing therapeutic intervention efficacy. The aim of this study was to identify a plasma and/or serum microRNA (miRNA) biomarker panel for MNGIE. Sixty-five patients and 65 age and sex matched healthy controls were recruited and assigned to one of four study phases: (i) discovery for sample size determination; (ii) candidate screening; (iii) candidate validation; and (iv) verifying the performance of the validated miRNA panel in four patients treated with erythrocyte-encapsulated thymidine phosphorylase (EE-TP), an enzyme replacement under development for MNGIE. Quantitative PCR (qPCR) was used to profile miRNAs in serum and/or plasma samples collected for the discovery, validation and performance phases, and next generation sequencing (NGS) analysis was applied to serum samples assigned to the candidate screening phase. Forty-one differentially expressed candidate miRNAs were identified in the sera of patients (p < 0.05, log2 fold change > 1). The validation cohort revealed that of those, 27 miRNAs were upregulated in plasma and three miRNAs were upregulated in sera (p < 0.05). Through binary logistic regression analyses, five plasma miRNAs (miR-192-5p, miR-193a-5p, miR-194-5p, miR-215-5p and miR-34a-5p) and three serum miRNAs (miR-192-5p, miR-194-5p and miR-34a-5p) were shown to robustly distinguish MNGIE from healthy controls. Reduced longitudinal miRNA expression of miR-34a-5p was observed in all four patients treated with EE-TP and coincided with biochemical and clinical improvements. We recommend the inclusion of the plasma exploratory miRNA biomarker panel in future clinical trials of investigational therapies for MNGIE; it may have prognostic value for assessing clinical status.


Subject(s)
Intestinal Pseudo-Obstruction/blood , MicroRNAs/blood , Muscular Dystrophy, Oculopharyngeal/blood , Ophthalmoplegia/congenital , Biomarkers/blood , Case-Control Studies , Gene Expression Profiling , Humans , Ophthalmoplegia/blood
3.
J Inherit Metab Dis ; 44(2): 376-387, 2021 03.
Article in English | MEDLINE | ID: mdl-32898308

ABSTRACT

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a rare autosomal recessive disease caused by TYMP mutations and thymidine phosphorylase (TP) deficiency. Thymidine and deoxyuridine accumulate impairing the mitochondrial DNA maintenance and integrity. Clinically, patients show severe and progressive gastrointestinal and neurological manifestations. The onset typically occurs in the second decade of life and mean age at death is 37 years. Signs and symptoms of MNGIE are heterogeneous and confirmatory diagnostic tests are not routinely performed by most laboratories, accounting for common misdiagnosis. Factors predictive of progression and appropriate tests for monitoring are still undefined. Several treatment options showed promising results in restoring the biochemical imbalance of MNGIE. The lack of controlled studies with appropriate follow-up accounts for the limited evidence informing diagnostic and therapeutic choices. The International Consensus Conference (ICC) on MNGIE, held in Bologna, Italy, on 30 March to 31 March 2019, aimed at an evidence-based consensus on diagnosis, prognosis, and treatment of MNGIE among experts, patients, caregivers and other stakeholders involved in caring the condition. The conference was conducted according to the National Institute of Health Consensus Conference methodology. A consensus development panel formulated a set of statements and proposed a research agenda. Specifically, the ICC produced recommendations on: (a) diagnostic pathway; (b) prognosis and the main predictors of disease progression; (c) efficacy and safety of treatments; and (f) research priorities on diagnosis, prognosis, and treatment. The Bologna ICC on diagnosis, management and treatment of MNGIE provided evidence-based guidance for clinicians incorporating patients' values and preferences.


Subject(s)
Gastrointestinal Diseases/diagnosis , Gastrointestinal Diseases/therapy , Mitochondrial Encephalomyopathies/diagnosis , Mitochondrial Encephalomyopathies/therapy , Consensus , DNA, Mitochondrial/genetics , Gastrointestinal Diseases/genetics , Gastrointestinal Diseases/metabolism , Humans , International Cooperation , Mitochondrial Encephalomyopathies/genetics , Mitochondrial Encephalomyopathies/metabolism , Mutation , Thymidine Phosphorylase/genetics , Thymidine Phosphorylase/metabolism
4.
J Clin Med ; 9(3)2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32183169

ABSTRACT

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an ultra-rare disorder caused by mutations in TYMP, leading to a deficiency in thymidine phosphorylase and a subsequent systemic accumulation of thymidine and 2'-deoxyuridine. Erythrocyte-encapsulated thymidine phosphorylase (EE-TP) is under clinical development as an enzyme replacement therapy for MNGIE. Bioanalytical methods were developed according to regulatory guidelines for the quantification of thymidine and 2'-deoxyuridine in plasma and urine using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for supporting the pharmacodynamic evaluation of EE-TP. Samples were deproteinized with 5% perchloric acid (v/v) and the supernatants analyzed using a Hypercarb column (30 × 2.1 mm, 3 µm), with mobile phases of 0.1% formic acid in methanol and 0.1% formic acid in deionized water. Detection was conducted using an ion-spray interface running in positive mode. Isotopically labelled thymidine and 2'-deoxyuridine were used as internal standards. Calibration curves for both metabolites showed linearity (r > 0.99) in the concentration ranges of 10-10,000 ng/mL for plasma, and 1-50 µg/mL for urine, with method analytical performances within the acceptable criteria for quality control samples. The plasma method was successfully applied to the diagnosis of two patients with MNGIE and the quantification of plasma metabolites in three patients treated with EE-TP.

5.
J Clin Med ; 8(8)2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31344955

ABSTRACT

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder which primarily affects the gastrointestinal and nervous systems. This disease is caused by mutations in the nuclear TYMP gene, which encodes for thymidine phosphorylase, an enzyme required for the normal metabolism of deoxynucleosides, thymidine, and deoxyuridine. The subsequent elevated systemic concentrations of deoxynucleosides lead to increased intracellular concentrations of their corresponding triphosphates, and ultimately mitochondrial failure due to progressive accumulation of mitochondrial DNA (mtDNA) defects and mtDNA depletion. Currently, there are no treatments for MNGIE where effectiveness has been evidenced in clinical trials. This Phase 2, multi-centre, multiple dose, open label trial without a control will investigate the application of erythrocyte-encapsulated thymidine phosphorylase (EE-TP) as an enzyme replacement therapy for MNGIE. Three EE-TP dose levels are planned with patients receiving the dose level that achieves metabolic correction. The study duration is 31 months, comprising 28 days of screening, 90 days of run-in, 24 months of treatment and 90 days of post-dose follow-up. The primary objectives are to determine the safety, tolerability, pharmacodynamics, and efficacy of multiple doses of EE-TP. The secondary objectives are to assess EE-TP immunogenicity after multiple dose administrations and changes in clinical assessments, and the pharmacodynamics effect of EE-TP on clinical assessments.

6.
J Clin Med ; 8(4)2019 Apr 05.
Article in English | MEDLINE | ID: mdl-30959750

ABSTRACT

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an ultra-rare autosomal recessive disorder of nucleoside metabolism that is caused by mutations in the nuclear thymidine phosphorylase gene (TYMP) gene, encoding for the enzyme thymidine phosphorylase. There are currently no approved treatments for MNGIE. The aim of this study was to investigate the safety, tolerability, and efficacy of an enzyme replacement therapy for the treatment of MNGIE. In this single centre study, three adult patients with MNGIE received intravenous escalating doses of erythrocyte encapsulated thymidine phosphorylase (EE-TP; dose range: 4 to 108 U/kg/4 weeks). EE-TP was well tolerated and reductions in the disease-associated plasma metabolites, thymidine, and deoxyuridine were observed in all three patients. Clinical improvements, including weight gain and improved disease scores, were observed in two patients, suggesting that EE-TP is able to reverse some aspects of the disease pathology. Transient, non-serious adverse events were observed in two of the three patients; these did not lead to therapy discontinuation and they were managed with pre-medication prior to infusion of EE-TP. To conclude, enzyme replacement therapy with EE-TP demonstrated biochemical and clinical therapeutic efficacy with an acceptable clinical safety profile.

7.
Article in English | MEDLINE | ID: mdl-30587073

ABSTRACT

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a rare and fatal inherited metabolic disorder due to mutations in the nuclear TYMP gene and leads to a deficiency in the enzyme thymidine phosphorylase. This results in an accumulation of the deoxynucleosides, thymidine and deoxyuridine in the cellular and extracellular compartments, ultimately leading to mitochondrial failure. The understanding of the precise molecular mechanisms that underlie the disease pathology is limited, being hampered by the rarity of the disorder. Expression profiling of serum based mircoRNAs and subsequent bioinformatical analyses provide an approach to facilitate the identity of dysregulated genes and signalling pathways potentially involved in the pathogenesis of MNGIE.


Subject(s)
MicroRNAs/metabolism , Mitochondrial Encephalomyopathies/genetics , Thymidine Phosphorylase/metabolism , Computational Biology/methods , Deoxyuridine/metabolism , Gene Expression Regulation , Humans , Mitochondria/genetics , Mitochondrial Encephalomyopathies/metabolism , Mutation , Nucleotidases , Signal Transduction , Thymidine/metabolism
8.
Mol Ther Methods Clin Dev ; 11: 1-8, 2018 Dec 14.
Article in English | MEDLINE | ID: mdl-30294618

ABSTRACT

Erythrocyte encapsulated thymidine phosphorylase is recombinant Escherichia coli thymidine phosphorylase encapsulated within human autologous erythrocytes and is under development as an enzyme replacement therapy for the ultra-rare inherited metabolic disorder mitochondrial neurogastrointestinal encephalomyopathy. This study describes the method validation of a two-step bridging electrochemiluminescence immunoassay for the detection of anti-thymidine phosphorylase antibodies in human serum according to current industry practice and regulatory guidelines. The analytical method was assessed for screening cut point, specificity, selectivity, precision, prozone effect, drug tolerance, and stability. Key findings were a correction factor of 129 relative light units for the cut-point determination; a specificity cut point of 93% inhibition; confirmed intra-assay and inter-assay precision; assay sensitivity of 356 ng/mL; no matrix or prozone effects up to 25,900 ng/mL; a drug tolerance of 156 ng/mL; and stability at room temperature for 24 hr and up to five freeze-thaws. Immunogenicity evaluations of serum from three patients who received erythrocyte encapsulated thymidine phosphorylase under a compassionate treatment program showed specific anti-thymidine phosphorylase antibodies in one patient. To conclude, a sensitive, specific, and selective immunoassay has been validated for the measurement of anti-thymidine phosphorylase antibodies; this will be utilized in a phase II pivotal clinical trial of erythrocyte encapsulated thymidine phosphorylase.

9.
Front Genet ; 9: 669, 2018.
Article in English | MEDLINE | ID: mdl-30627136

ABSTRACT

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an ultra-rare metabolic autosomal recessive disease, caused by mutations in the nuclear gene TYMP which encodes the enzyme thymidine phosphorylase. The resulting enzyme deficiency leads to a systemic accumulation of the deoxyribonucleosides thymidine and deoxyuridine, and ultimately mitochondrial failure due to a progressive acquisition of secondary mitochondrial DNA (mtDNA) mutations and mtDNA depletion. Clinically, MNGIE is characterized by gastrointestinal and neurological manifestations, including cachexia, gastrointestinal dysmotility, peripheral neuropathy, leukoencephalopathy, ophthalmoplegia and ptosis. The disease is progressively degenerative and leads to death at an average age of 37.6 years. As with the vast majority of rare diseases, patients with MNGIE face a number of unmet needs related to diagnostic delays, a lack of approved therapies, and non-specific clinical management. We provide here a comprehensive collation of the available knowledge of MNGIE since the disease was first described 42 years ago. This review includes symptomatology, diagnostic procedures and hurdles, in vitro and in vivo disease models that have enhanced our understanding of the disease pathology, and finally experimental therapeutic approaches under development. The ultimate aim of this review is to increase clinical awareness of MNGIE, thereby reducing diagnostic delay and improving patient access to putative treatments under investigation.

10.
J Pharm Biomed Anal ; 76: 8-12, 2013 Mar 25.
Article in English | MEDLINE | ID: mdl-23291437

ABSTRACT

A sensitive and simple reverse-phase high performance liquid chromatographic (HPLC) assay has been validated for the determination of thymine as a measure of thymidine phosphorylase activity encapsulated in erythrocytes (EE-TP), a formulation which is under clinical development as an enzyme replacement therapy for the treatment of mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). Diluted erythrocyte lysates were incubated in 100mM sodium phosphate buffer and 10mM thymidine at 37°C for 10min and the reaction stopped with 40% trichloroacetic acid. Following centrifugation, the supernatant was washed with water saturated diethyl ether, and injected onto a Spherisorb C(18) column (125mm×4.6mm, 5µm), with a mobile phase (40mM ammonium acetate, 5mM tetrabutyl ammonium hydrogen sulphate, pH 2.70) delivered at a flow rate of 1.0ml/min and run time of 8min. Ultraviolet detection (UV) was employed at 254nm. The method was linear in the range of 5-500nmol/ml (r(2)=0.992), specific with intra- and inter-day precisions of <9.6 and accuracies within ±20%. Limits of detection and quantification were 1.2nmol/ml and 10nmol/ml, respectively. The method was applied to quantify thymidine phosphorylase activity in samples of in-process controls and batches of EE-TP manufactured for clinical use.


Subject(s)
Chromatography, High Pressure Liquid/methods , Erythrocytes/chemistry , Thymidine Phosphorylase/analysis , Thymidine/analysis , Chromatography, Reverse-Phase/methods , Humans , Limit of Detection , Sensitivity and Specificity , Thymidine/metabolism , Thymidine Phosphorylase/administration & dosage
11.
Toxicol Sci ; 131(1): 311-24, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22977166

ABSTRACT

Erythrocyte-encapsulated thymidine phosphorylase (EE-TP) is currently under development as an enzyme replacement therapy for mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), an autosomal recessive disorder caused by a deficiency of thymidine phosphorylase. The rationale for the development of EE-TP is based on the pathologically elevated metabolites (thymidine and deoxyuridine) being able to freely diffuse across the erythrocyte membrane where the encapsulated enzyme catalyses their metabolism to the normal products. The systemic toxic potential of EE-TP was assessed when administered intermittently by iv bolus injection to BALB/c mice and Beagle dogs for 4 weeks. The studies consisted of one control group receiving sham-loaded erythrocytes twice weekly and two treated groups, one dosed once every 2 weeks and the other dosed twice per week. The administration of EE-TP to BALB/c mice resulted in thrombi/emboli in the lungs and spleen enlargement. These findings were also seen in the control group, and there was no relationship to the number of doses administered. In the dog, transient clinical signs were associated with EE-TP administration, suggestive of an immune-based reaction. Specific antithymidine phosphorylase antibodies were detected in two dogs and in a greater proportion of mice treated once every 2 weeks. Nonspecific antibodies were detected in all EE-TP-treated animals. In conclusion, these studies do not reveal serious toxicities that would preclude a clinical trial of EE-TP in patients with MNGIE, but caution should be taken for infusion-related reactions that may be related to the production of nonspecific antibodies or a cell-based immune response.


Subject(s)
Drug Carriers , Enzyme Replacement Therapy , Erythrocytes , Intestinal Pseudo-Obstruction/drug therapy , Mitochondrial Encephalomyopathies/drug therapy , Thymidine Phosphorylase/toxicity , Toxicity Tests/methods , Animals , Blood Transfusion, Autologous , Dogs , Drug Carriers/chemistry , Drug Evaluation, Preclinical , Erythrocyte Transfusion , Erythrocytes/chemistry , Intestinal Pseudo-Obstruction/enzymology , Mice , Mice, Inbred BALB C , Mitochondrial Encephalomyopathies/enzymology , Muscular Dystrophy, Oculopharyngeal , Ophthalmoplegia/congenital , Thymidine Phosphorylase/administration & dosage
12.
J Pharm Biomed Anal ; 72: 16-24, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23146222

ABSTRACT

Erythrocyte encapsulated thymidine phosphorylase (EE-TP) is under development as an enzyme replacement therapy for mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), a fatal metabolic disorder resulting from an inherited deficiency of the enzyme thymidine phosphorylase. We report here the development and validation of a sensitive electrochemiluminescent (ECL) bridging immunoassay to support Good Laboratory Practice (GLP)-compliant preclinical safety studies of EE-TP in the mouse and dog. Affinity-purified rabbit anti-E. coli thymidine phosphorylase (TP) antibody was used as a calibrator standard with an effective working range of 2.5-7500 ng/mL. The minimum required dilution (MRD) for both mouse and dog sera was 1:10. The mean analytical recoveries for anti-TP antibodies spiked into serum at 70 ng/mL and 7000 ng/mL were 117.9% and 93.2%, respectively for mouse, and 112.0% and 104.3%, respectively for dog. The intra-assay precision (coefficient of variation, CV) ranged between 1.1% and 8.0% in mouse serum, and 1.9% and 2.5% in dog serum. Inter-assay precision ranged between -1.6% and 6.7% in mouse serum, and -13.0% and -2.5% in dog serum. Assay cut-point/screening cut-point correction factors were 201.37 and 44.4, respectively for mouse and dog sera. For future analysis of positive test samples, less than 37.12% (mouse) and 31.41% (dog) inhibition of the assay signal in the confirmation assay will confer anti-TP antibody specificity. Assay drift and hook effects (prozone) were not observed. The intra-assay and inter-assay accuracy for robustness were within ±20%.


Subject(s)
Antibodies/blood , Immunoassay/methods , Thymidine Phosphorylase/immunology , Animals , Antibodies/chemistry , Antibodies/immunology , Calibration , Dogs , Immunoassay/standards , Mice , Mice, Inbred BALB C , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...