Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Youth Adolesc ; 53(5): 1029-1046, 2024 May.
Article in English | MEDLINE | ID: mdl-38217837

ABSTRACT

Wellbeing is protective against the emergence of psychopathology. Neurobiological markers associated with mental wellbeing during adolescence are important to understand. Limited research has examined neural networks (white matter tracts) and mental wellbeing in early adolescence specifically. A cross-sectional diffusion tensor imaging analysis approach was conducted, from the Longitudinal Adolescent Brain study, First Hundred Brains cohort (N = 99; 46.5% female; Mage = 13.01, SD = 0.55). Participants completed self-report measures including wellbeing, quality-of-life, and psychological distress. Potential neurobiological profiles using fractional anisotropy, axial, and radial diffusivity were determined via a whole brain voxel-wise approach, and hierarchical cluster analysis of fractional anisotropy values, obtained from 21 major white matter tracts. Three cluster groups with significantly different neurobiological profiles were distinguished. No significant differences were found between the three cluster groups and measures of wellbeing, but two left lateralized significant associations between white matter tracts and wellbeing measures were found. These results provide preliminary evidence for potential neurobiological markers of mental health and wellbeing in early adolescence and should be tracked longitudinally to provide more detailed and robust findings.


Subject(s)
White Matter , Humans , Adolescent , Female , Male , White Matter/diagnostic imaging , Diffusion Tensor Imaging/methods , Cross-Sectional Studies , Brain/diagnostic imaging , Brain/pathology , Diffusion Magnetic Resonance Imaging
2.
Brain Imaging Behav ; 18(3): 519-528, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38216837

ABSTRACT

This study of Australian adolescents (N = 88, 12-13-years-old) investigated the relationship between hippocampal grey matter volume (GMV) and self-reported psychological distress (K10) at four timepoints, across 12 months. Participants were divided into two groups; those who had K10 scores between 10 and 15 for all four timepoints were categorised as "low distress" (i.e., control group; n = 38), while participants who had K10 scores of 16 or higher at least once over the year were categorised as "moderate-high distress" (n = 50). Associations were tested by GEE fitting of GMV and K10 measures at the same time point, and in the preceding and subsequent timepoints. Analyses revealed smaller preceding left GMV and larger preceding right GMV were associated with higher subsequent K10 scores in the "moderate-high distress" group. This was not observed in the control group. In contrast, the control group showed significant co-occurring associations (i.e., at the same TP) between GMV and K10 scores. The "moderate-high distress" group experienced greater variability in distress. These results suggest that GMV development in early adolescence is differently associated with psychological distress for those who experience "moderate-high distress" at some point over the year, compared to controls. These findings offer a novel way to utilise short-interval, multiple time-point longitudinal data to explore changes in volume and experience of psychological distress in early adolescents. The results suggest hippocampal volume in early adolescence may be linked to fluctuations in psychological distress.


Subject(s)
Gray Matter , Hippocampus , Magnetic Resonance Imaging , Psychological Distress , Humans , Adolescent , Male , Hippocampus/diagnostic imaging , Hippocampus/pathology , Female , Longitudinal Studies , Gray Matter/diagnostic imaging , Gray Matter/pathology , Magnetic Resonance Imaging/methods , Child , Organ Size , Self Report , Stress, Psychological/psychology , Australia
3.
J Alzheimers Dis ; 94(2): 841-856, 2023.
Article in English | MEDLINE | ID: mdl-37334601

ABSTRACT

Dementia is understood to arise from a mixed etiology, enveloping chronic inflammatory and vascular impacts on the brain, driven by a constellation of modifiable risk factors which are largely mediated by lifestyle-related behaviors. These risk factors manifest over a prolonged preclinical period and account for up to 40% of the population attributable risk for dementia, representing viable targets for early interventions aimed at abating disease onset and progression. Here we outline the protocol for a 12-week randomized control trial (RCT) of a multimodal Lifestyle Intervention Study for Dementia Risk Reduction (LEISURE), with longitudinal follow-up at 6-months and 24-months post-intervention. This trial integrates exercise, diet, sleep, and mindfulness to simultaneously target multiple different etiopathogenetic mechanisms and their interplay in a healthy older adult population (aged 50-85 years), and assesses dementia risk reduction as the primary endpoint. The LEISURE study is located in the Sunshine Coast region of Australia, which has one of the nation's highest proportions of adults aged over 50 years (36.4%), and corresponding dementia prevalence. This trial is novel in its inclusion of mindfulness and sleep as multidomain lifestyle targets, and in its comprehensive suite of secondary outcomes (based on psychological, physical health, sleep activity, and cognitive data) as well as exploratory neuroimaging (magnetic resonance imaging and electroencephalography) and molecular biology measures. These measures will provide greater insights into the brain-behavioral underpinnings of dementia prevention, as well as the predictors and impacts of the proposed lifestyle intervention. The LEISURE study was prospectively registered (ACTRN12620000054910) on 19 January 2020.


Subject(s)
Cognitive Dysfunction , Dementia , Humans , Middle Aged , Aged , Life Style , Brain/diagnostic imaging , Brain/pathology , Exercise , Dementia/epidemiology , Dementia/prevention & control , Dementia/pathology , Leisure Activities , Cognitive Dysfunction/pathology , Randomized Controlled Trials as Topic
4.
Sci Rep ; 13(1): 6437, 2023 04 20.
Article in English | MEDLINE | ID: mdl-37081073

ABSTRACT

In humans, motor learning is underpinned by changes in sensorimotor network functional connectivity (FC). Unilateral contractions increase FC in the ipsilateral primary motor cortex (M1) and supplementary motor area (SMA); areas involved in motor planning and execution of the contralateral hand. Therefore, unilateral contractions are a promising approach to augment motor performance in the contralateral hand. In a within-participant, randomized, cross-over design, 15 right-handed adults had two magnetic resonance imaging (MRI) sessions, where functional-MRI and MR-Spectroscopic Imaging were acquired before and after repeated right-hand contractions at either 5% or 50% maximum voluntary contraction (MVC). Before and after scanning, response times (RTs) were determined in both hands. Nine minutes of 50% MVC contractions resulted in decreased handgrip force in the contracting hand, and decreased RTs and increased handgrip force in the contralateral hand. This improved motor performance in the contralateral hand was supported by significant neural changes: increased FC between SMA-SMA and increased FC between right M1 and right Orbitofrontal Cortex. At a neurochemical level, the degree of GABA decline in left M1, left and right SMA correlated with subsequent behavioural improvements in the left-hand. These results support the use of repeated handgrip contractions as a potential modality for improving motor performance in the contralateral hand.


Subject(s)
Hand Strength , Motor Cortex , Adult , Humans , Reaction Time , Hand/physiology , Motor Cortex/physiology , Functional Laterality/physiology , Magnetic Resonance Imaging/methods
5.
bioRxiv ; 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36993354

ABSTRACT

We previously observed sustained fMRI BOLD signal in the basal ganglia in focal hand dystonia patients after a repetitive finger tapping task. Since this was observed in a task-specific dystonia, for which excessive task repetition may play a role in pathogenesis, in the current study we asked if this effect would be observed in a focal dystonia (cervical dystonia [CD]) that is not considered task-specific or thought to result from overuse. We evaluated fMRI BOLD signal time courses before, during, and after the finger tapping task in CD patients. We observed patient/control differences in post-tapping BOLD signal in left putamen and left cerebellum during the non-dominant (left) hand tapping condition, reflecting abnormally sustained BOLD signal in CD. BOLD signals in left putamen and cerebellum were also abnormally elevated in CD during tapping itself and escalated as tapping was repeated. There were no cerebellar differences in the previously studied FHD cohort, either during or after tapping. We conclude that some elements of pathogenesis and/or pathophysiology associated with motor task execution/repetition may not be limited to task-specific dystonias, but there may be regional differences in these effects across dystonias, associated with different types of motor control programs.

6.
Front Neurol ; 10: 265, 2019.
Article in English | MEDLINE | ID: mdl-31019484

ABSTRACT

In a previous report showing white matter microstructural hemispheric asymmetries medial to the pallidum in focal dystonias, we showed preliminary evidence that this abnormality was reduced 4 weeks after botulinum toxin (BTX) injections. In the current study we report the completed treatment study in a full-size cohort of CD patients (n = 14). In addition to showing a shift toward normalization of the hemispheric asymmetry, we evaluated clinical relevance of these findings by relating white matter changes to degree of symptom improvement. We also evaluated whether the magnitude of the white matter asymmetry before treatment was related to severity, laterality, duration of dystonia, and/or number of previous BTX injections. Our results confirm the findings of our preliminary report: we observed significant fractional anisotropy (FA) changes medial to the pallidum 4 weeks after BTX in CD participants that were not observed in controls scanned at the same interval. There was a significant relationship between magnitude of hemispheric asymmetry and dystonia symptom improvement, as measured by percent reduction in dystonia scale scores. There was also a trend toward a relationship between magnitude of pre-injection white matter asymmetry and symptom severity, but not symptom laterality, disorder duration, or number of previous BTX injections. Post-hoc analyses suggested the FA changes at least partially reflected changes in pathophysiology, but a dissociation between patient perception of benefit from injections and FA changes suggested the changes did not reflect changes to the primary "driver" of the dystonia. In contrast, there were no changes or group differences in DTI diffusivity measures, suggesting the hemispheric asymmetry in CD does not reflect irreversible white matter tissue loss. These findings support the hypothesis that central nervous system white matter changes are involved in the mechanism by which BTX exerts clinical benefit.

7.
J Cereb Blood Flow Metab ; 38(9): 1564-1583, 2018 09.
Article in English | MEDLINE | ID: mdl-28929902

ABSTRACT

Stroke is a leading cause of long-term disability, with around three-quarters of stroke survivors experiencing motor problems. Intensive physiotherapy is currently the most effective treatment for post-stroke motor deficits, but much recent research has been targeted at increasing the effects of the intervention by pairing it with a wide variety of adjunct therapies, all of which aim to increase cortical plasticity, and thereby hope to maximize functional outcome. Here, we review the literature describing neurochemical changes underlying plasticity induction following stroke. We discuss methods of assessing neurochemicals in humans, and how these measurements change post-stroke. Motor learning in healthy individuals has been suggested as a model for stroke plasticity, and we discuss the support for this model, and what evidence it provides for neurochemical changes. One converging hypothesis from animal, healthy and stroke studies is the importance of the regulation of the inhibitory neurotransmitter GABA for the induction of cortical plasticity. We discuss the evidence supporting this hypothesis, before finally summarizing the literature surrounding the use of adjunct therapies such as non-invasive brain stimulation and SSRIs in post-stroke motor recovery, both of which have been show to influence the GABAergic system.


Subject(s)
Combined Modality Therapy/methods , Neuronal Plasticity/physiology , Stroke Rehabilitation/methods , Stroke/physiopathology , gamma-Aminobutyric Acid/metabolism , Animals , Electric Stimulation Therapy/methods , Humans , Recovery of Function/drug effects , Recovery of Function/physiology , Selective Serotonin Reuptake Inhibitors/therapeutic use , Stroke/metabolism
8.
PLoS One ; 11(5): e0155302, 2016.
Article in English | MEDLINE | ID: mdl-27171035

ABSTRACT

BACKGROUND: Dystonia, a debilitating movement disorder characterized by abnormal fixed positions and/or twisting postures, is associated with dysfunction of motor control networks. While gross brain lesions can produce secondary dystonias, advanced neuroimaging techniques have been required to identify network abnormalities in primary dystonias. Prior neuroimaging studies have provided valuable insights into the pathophysiology of dystonia, but few directly assessed the gross volume of motor control regions, and to our knowledge, none identified abnormalities common to multiple types of idiopathic focal dystonia. METHODS: We used two gross volumetric segmentation techniques and one voxelwise volumetric technique (voxel based morphometry, VBM) to compare regional volume between matched healthy controls and patients with idiopathic primary focal dystonia (cervical, n = 17, laryngeal, n = 7). We used (1) automated gross volume measures of eight motor control regions using the FreeSurfer analysis package; (2) blinded, anatomist-supervised manual segmentation of the whole thalamus (also gross volume); and (3) voxel based morphometry, which measures local T1-weighted signal intensity and estimates gray matter density or volume at the level of single voxels, for both whole-brain and thalamus. RESULTS: Using both automated and manual gross volumetry, we found a significant volume decrease only in the thalamus in two focal dystonias. Decreases in whole-thalamic volume were independent of head and brain size, laterality of symptoms, and duration. VBM measures did not differ between dystonia and control groups in any motor control region. CONCLUSIONS: Reduced thalamic gross volume, detected in two independent analyses, suggests a common anatomical abnormality in cervical dystonia and spasmodic dysphonia. Defining the structural underpinnings of dystonia may require such complementary approaches.


Subject(s)
Larynx/pathology , Thalamus/pathology , Torticollis/pathology , Demography , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Organ Size
SELECTION OF CITATIONS
SEARCH DETAIL
...