Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 276(48): 44976-83, 2001 Nov 30.
Article in English | MEDLINE | ID: mdl-11579092

ABSTRACT

Cholesterol efflux from macrophage foam cells, a key step in reverse cholesterol transport, requires trafficking of cholesterol from intracellular sites to the plasma membrane. Sphingomyelin is a cholesterol-binding molecule that transiently exists with cholesterol in endosomes and lysosomes but is rapidly hydrolyzed by lysosomal sphingomyelinase (L-SMase), a product of the acid sphingomyelinase (ASM) gene. We therefore hypothesized that sphingomyelin hydrolysis by L-SMase enables cholesterol efflux by preventing cholesterol sequestration by sphingomyelin. Macrophages from wild-type and ASM knockout mice were incubated with [(3)H]cholesteryl ester-labeled acetyl-LDL and then exposed to apolipoprotein A-I or high density lipoprotein. In both cases, [(3)H]cholesterol efflux was decreased substantially in the ASM knockout macrophages. Similar results were shown for ASM knockout macrophages labeled long-term with [(3)H]cholesterol added directly to medium, but not for those labeled for a short period, suggesting defective efflux from intracellular stores but not from the plasma membrane. Cholesterol trafficking to acyl-coenzyme A:cholesterol acyltransferase (ACAT) was also defective in ASM knockout macrophages. Using filipin to probe cholesterol in macrophages incubated with acetyl-LDL, we found there was modest staining in the plasma membrane of wild-type macrophages but bright, perinuclear fluorescence in ASM knockout macrophages. Last, when wild-type macrophages were incubated with excess sphingomyelin to "saturate" L-SMase, [(3)H]cholesterol efflux was decreased. Thus, sphingomyelin accumulation due to L-SMase deficiency leads to defective cholesterol trafficking and efflux, which we propose is due to sequestration of cholesterol by sphingomyelin and possibly other mechanisms. This model may explain the low plasma high density lipoprotein found in ASM-deficient humans and may implicate L-SMase deficiency and/or sphingomyelin enrichment of lipoproteins as novel atherosclerosis risk factors.


Subject(s)
Cholesterol/metabolism , Macrophages/metabolism , Sphingomyelin Phosphodiesterase/physiology , Animals , Biological Transport , Cell Membrane/metabolism , Endosomes/metabolism , Hydroxycholesterols/metabolism , Lipoproteins, HDL/metabolism , Lipoproteins, LDL/metabolism , Liposomes/metabolism , Lysosomes/metabolism , Mice , Mice, Knockout , Microscopy, Fluorescence , Risk Factors , Sphingomyelins/metabolism , Time Factors
2.
J Biol Chem ; 276(47): 43564-9, 2001 Nov 23.
Article in English | MEDLINE | ID: mdl-11559713

ABSTRACT

Recently, ATP-binding cassette transporter A1 (ABCA1), the defective molecule in Tangier disease, has been shown to stimulate phospholipid and cholesterol efflux to apolipoprotein A-I (apoA-I); however, little is known concerning the cellular cholesterol pools that act as the source of cholesterol for ABCA1-mediated efflux. We observed a higher level of isotopic and mass cholesterol efflux from mouse peritoneal macrophages labeled with [(3)H]cholesterol/acetyl low density lipoprotein (where cholesterol accumulates in late endosomes and lysosomes) compared with cells labeled with [(3)H]cholesterol with 10% fetal bovine serum, suggesting that late endosomes/lysosomes act as a preferential source of cholesterol for ABCA1-mediated efflux. Consistent with this idea, macrophages from Niemann-Pick C1 mice that have an inability to exit cholesterol from late endosomes/lysosomes showed a profound defect in cholesterol efflux to apoA-I. In contrast, phospholipid efflux to apoA-I was normal in Niemann-Pick C1 macrophages, as was cholesterol efflux following plasma membrane cholesterol labeling. These results suggest that cholesterol deposited in late endosomes/lysosomes preferentially acts as a source of cholesterol for ABCA1-mediated cholesterol efflux.


Subject(s)
ATP-Binding Cassette Transporters/physiology , Cholesterol/metabolism , Endosomes/metabolism , Lysosomes/metabolism , ATP-Binding Cassette Transporters/genetics , Animals , Biological Transport , Mice , Mice, Inbred BALB C , RNA, Messenger/genetics
3.
Arterioscler Thromb Vasc Biol ; 20(12): 2607-13, 2000 Dec.
Article in English | MEDLINE | ID: mdl-11116060

ABSTRACT

The apoE knockout (E0) mouse is one of the most widely used animal models of atherosclerosis, and there may be similarities to chylomicron remnant-induced atherosclerosis in humans. Although the lesions of these mice contain large numbers of cholesteryl ester (CE)-laden macrophages (foam cells), E0 plasma lipoproteins are relatively weak inducers of cholesterol esterification in macrophages. Previous in vivo work has suggested that arterial wall sphingomyelinase (SMase) may promote atherogenesis in the E0 mouse, perhaps by inducing subendothelial lipoprotein aggregation and subsequent foam cell formation. The goal of the present study was to test the hypothesis that the modification of E0 lipoproteins by SMase converts these lipoproteins into potent inducers of macrophage foam cell formation. When d<1.063 E0 lipoproteins were pretreated with SMase and then incubated with E0 macrophages, cellular CE mass and stimulation of the cholesterol esterification pathway were increased approximately 5-fold compared with untreated lipoproteins. SMase-treated E0 lipoproteins were more potent stimulators of cholesterol esterification than either E0 lipoproteins in the presence of lipoprotein lipases or oxidized E0 lipoproteins. The uptake and degradation of SMase-treated E0 lipoproteins by macrophages were saturable and specific and substantially inhibited by partial proteolysis of cell-surface proteins. Uptake and degradation were diminished by an anti-apoB antibody and by competition with human S(f) 100-400 hypertriglyceridemic VLDL, raising the possibility that a receptor that recognizes apoB-48 might be involved. In conclusion, SMase-modification of E0 lipoproteins, a process previously shown to occur in lesions, may be an important mechanism for foam cell formation in this widely studied model of atherosclerosis. Moreover, the findings in this report may provide important clues regarding the atherogenicity of chylomicron remnants in humans.


Subject(s)
Apolipoproteins E/deficiency , Arteriosclerosis/etiology , Foam Cells , Lipoproteins/metabolism , Macrophages/metabolism , Sphingomyelin Phosphodiesterase/metabolism , Animals , Antibodies/pharmacology , Apolipoproteins B/immunology , Apolipoproteins E/genetics , Cholesterol Esters/biosynthesis , Disease Models, Animal , Endothelium, Vascular/enzymology , Lipoproteins/immunology , Lipoproteins, VLDL/immunology , Mice , Mice, Knockout
4.
Circulation ; 99(16): 2177-84, 1999 Apr 27.
Article in English | MEDLINE | ID: mdl-10217660

ABSTRACT

BACKGROUND: Biventricular direct cardiac compression (DCC) can potentially support the failing heart without the complications associated with a blood/device interface. The effect of uniform DCC on left and right ventricular performance was evaluated in 7 isolated canine heart preparations. METHODS AND RESULTS: A computer-controlled afterload system either constrained the isolated heart to contract isovolumically or simulated hemodynamic properties of physiological ejection. Biventricular DCC was provided by a chamber surrounding the heart that allowed adjustment of the compression pressure, onset time, and duration. Through a series of ventricular preloads, the effect of DCC on the end-systolic pressure-volume relationship (ESPVR) was evaluated under isovolumic and ejecting conditions. Under both conditions, DCC shifted the ESPVR of the left and right ventricles upward by an amount approximately equal to the compression pressure. The augmentation of end-systolic pressure for each initial preload tested, however, was less under ejecting conditions, because reductions in end-systolic and end-diastolic volumes occurred with ejection. Nevertheless, the net effect was to increase stroke volume. Measurement of M&f1;O2 demonstrated that at a given ventricular volume, M&f1;O2 did not change with DCC; however, peak ventricular pressure increased substantially, so that the effective pressure-volume area increased. CONCLUSIONS: Biventricular DCC can augment end-systolic pressure with no added costs of M&f1;O2. Under ejecting conditions, this augmentation of ventricular contracting ability manifests as increases in stroke volume. Thus, DCC represents a feasible alternative form of ventricular assist, and devices that support the heart in this manner should be further explored.


Subject(s)
Heart/physiology , Hemodynamics/physiology , Myocardial Contraction/physiology , Stroke Volume/physiology , Animals , Blood Pressure , Dogs , In Vitro Techniques , Male , Shock, Cardiogenic/physiopathology , Systole , Ventricular Function , Ventricular Function, Right/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...