Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 14(5)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35267798

ABSTRACT

Polyurea is an isocyanate derivative, and comprises the basis for a well-established class of polymeric aerogels. Polyurea aerogels are prepared either via reaction of multifunctional isocyanates with multifunctional amines, via reaction of multifunctional isocyanates and water, or via reaction of multifunctional isocyanates and mineral acids. The first method is the established one for the synthesis of polyurea, the third is a relatively new method that yields polyurea doped with metal oxides in one step, while the reaction of isocyanates with water has become the most popular route to polyurea aerogels. The intense interest in polyurea aerogels can be attributed in part to the low cost of the starting materials-especially via the water method-in part to the extremely broad array of nanostructural morphologies that allow study of the nanostructure of gels as a function of synthetic conditions, and in part to the broad array of functional properties that can be achieved even within a single chemical composition by simply adjusting the synthetic parameters. In addition, polyurea aerogels based on aromatic isocyanates are typically carbonizable materials, making them highly competitive alternatives to phenolic aerogels as precursors of carbon aerogels. Several types of polyurea aerogels are already at different stages of commercialization. This article is a comprehensive review of all polyurea-based aerogels, including polyurea-crosslinked oxide and biopolymer aerogels, from a fundamental nanostructure-material properties perspective, as well as from an application perspective in thermal and acoustic insulation, oil adsorption, ballistic protection, and environmental cleanup.

2.
Polymers (Basel) ; 14(4)2022 Feb 13.
Article in English | MEDLINE | ID: mdl-35215635

ABSTRACT

Medical implants are routinely tracked and monitored using different techniques, such as MRI, X-ray, and ultrasound. Due to the need for ionizing radiation, the two former methods pose a significant risk to tissue. Ultrasound imaging, however, is non-invasive and presents no known risk to human tissue. Aerogels are an emerging material with great potential in biomedical implants. While qualitative observation of ultrasound images by experts can already provide a lot of information about the implants and the surrounding structures, this paper describes the development and study of two simple B-Mode image analysis techniques based on attenuation measurements and echogenicity comparisons, which can further enhance the study of the biological tissues and implants, especially of different types of biocompatible aerogels.

3.
Soft Matter ; 17(17): 4496-4503, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33949603

ABSTRACT

We report a mechanical metamaterial-like behavior as a function of the micro/nanostructure of otherwise chemically identical aliphatic polyurea aerogels. Transmissibility varies dramatically with frequency in these aerogels. Broadband vibration mitigation is provided at low frequencies (500-1000 Hz) through self-assembly of locally resonant metastructures wherein polyurea microspheres are embedded in a polyurea web-like network. A micromechanical constitutive model based on a discrete element method is established to explain the vibration mitigation mechanism. Simulations confirm the metamaterial-like behavior with a negative dynamic material stiffness for the micro-metastructured aerogels in a much wider frequency range than the majority of previously reported locally resonant metamaterials.

4.
Polymers (Basel) ; 12(12)2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33334083

ABSTRACT

We have previously shown the suitability of aerogels as scaffolds for neuronal cells. Here, we report on the use of superelastic shape memory polyurethane aerogels (SSMPA). SSMPA have a distinctly different stiffness than previously reported aerogels. The soft and deformable nature of SSMPA allowed for radial compression of the aerogel induced by a custom designed apparatus. This radial compression changed the pore diameter and surface roughness (Sa) of SSMPA, while maintaining similar stiffness. Two varieties of SSMPA were used, Mix-14 and Mix-18, with distinctly different pore diameters and Sa. Radial compression led to a decreased pore diameter, which, in turn, decreased the Sa. The use of custom designed apparatus and two types of SSMPA allowed us to examine the influence of stiffness, pore size, and Sa on the extension of processes (neurites) by PC12 neuronal cells. PC12 cells plated on SSMPA with a higher degree of radial compression extended fewer neurites per cell when compared to other groups. However, the average length of the neurites was significantly longer when compared to the unrestricted group and to those extended by cells plated on SSMPA with less radial compression. These results demonstrate that SSMPA with 1.9 µm pore diameter, 1.17 µm Sa, and 203 kPa stiffness provides the optimum combination of physical parameters for nerve regeneration.

5.
ACS Appl Mater Interfaces ; 11(37): 34292-34304, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31490651

ABSTRACT

Polyurethane aerogels were prepared from a rigid aromatic triisocyanate (tris(4-isocyanatophenyl)methane) and cage-shaped α- and ß-cyclodextrins as rigid polyols. Gelation was carried out in DMF using dibutyltin dilaurate as catalyst. Wet-gels were dried to aerogels (abbreviated as α- or ß-CDPU-xx) with supercritical fluid CO2. "xx" stands for the percent weight of the two monomers in the sol and was varied at two levels for each cyclodextrin: 2.5% and 15%. All aerogels were characterized with solid-state 13C and 15N NMR, CHN analysis, FTIR, XPS, SEM, and gas (N2 and CO2) sorption porosimetry. α- and ß-CDPU-xx aerogels were investigated as desiccants at room temperature. All materials had relatively higher capacities for water adsorption from high-humidity environments (99%) than typical commercial desiccants like silica or Drierite. However, α-CDPU-2.5 aerogels did stand out with a water uptake capacity reaching 1 g of H2O per gram of material. Most importantly though, adsorbed water could be released quantitatively without heating, by just reducing the relative humidity of the environment to 10%. All α- and ß-CDPU-xx aerogel samples were cycled between humid and dry environments 10 times. Their unusual behavior was traced to filling smaller mesopores with water and was attributed to a delicate balance of enthalpic (H-bonding) and entropic factors, whereas the latter are a function of pore sizes.

6.
ACS Appl Mater Interfaces ; 11(25): 22668-22676, 2019 Jun 26.
Article in English | MEDLINE | ID: mdl-31184858

ABSTRACT

A new route to metallic aerogels that bypasses the use of supercritical fluids and handling fragile wet-gel and aerogel precursors is exemplified by the carbothermal synthesis of monolithic Co(0) aerogels from compressed cobaltia xerogel powders coated conformally (cross-linked) at the primary particle level with a carbonizable polyurea. Residual carbon is removed, and carbon-free samples are obtained by high-temperature treatment of as-prepared Co(0) aerogels under a flowing stream of H2O/H2 that prevents oxidation of the Co(0) network. The durability of Co(0) aerogels is demonstrated under harsh processing conditions in their application as thermites. For this, Co(0) aerogel discs are infiltrated with LiClO4 from a melt and are ignited at about 1100 °C with an electric resistor. As Co(0) "burns" to CoO, temperature exceeds 1500 °C, and the heat released (-552 ± 2 kcal mol-1) is near to both the theoretical value (-58.47 kcal mol-1) and that from well-known pressed-pellet iron/perchlorate thermites (-66.6 kcal mol-1). The advantage of nanostructured thermites based on Co(0) aerogels is the efficiency (100%) by which the metal is consumed during its reaction with LiClO4 filling the pores.

7.
ACS Nano ; 13(3): 3677-3690, 2019 Mar 26.
Article in English | MEDLINE | ID: mdl-30839204

ABSTRACT

Morphology is a qualitative property of nanostructured matter and is articulated by visual inspection of micrographs. For deterministic procedures that relate nanomorphology to synthetic conditions, it is necessary to express nano- and microstructures numerically. Selecting polyurea aerogels as a model system with demonstrated potential for rich nanomorphology and guided by a statistical design-of-experiments model, we prepared a large array of materials (208) with identical chemical composition but quite different nanostructures. By reflecting on SEM imaging, it was realized that our first preverbal impression about a nanostructure is related to its openness and texture; the former is quantified by porosity ( Π), and the latter is oftentimes related to hydrophobicity, which, in turn, is quantified by the contact angle (θ) of water droplets resting on the material. Herewith, the θ-to-Π ratio is referred to as the K-index, and it was noticed that all polyurea samples of this study could be put in eight K-index groups with separate nanomorphologies ranging from caterpillar-like assemblies of nanoparticles, to thin nanofibers, to cocoon-like structures, to large bald microspheres. A first validation of the K-index as a morphology descriptor was based on compressing samples to different strains: it was observed that as the porosity decreases, the water-contact angle decreases proportionally, and thereby the K-index remains constant. The predictive power of the K-index was demonstrated with 20 polyurea aerogels prepared in 8 binary solvent systems. Subsequently, several material properties were correlated to nanomorphology through the K-index and that, in turn, provided insight about the root cause of the diversity of the nanostructure in polyurea aerogels. Finally, using response surface methodology, K-indexes and other material properties of practical interest were correlated to the monomer, water, and catalyst concentrations as well as the three Hansen solubility parameters of the sol. That enabled the synthesis of materials with up to six prescribed properties at a time, including nanomorphology, bulk density, BET surface area, elastic modulus, ultimate compressive strength, and thermal conductivity.

8.
Soft Matter ; 14(38): 7801-7808, 2018 Oct 03.
Article in English | MEDLINE | ID: mdl-30187058

ABSTRACT

The nonlinear mechanical properties, deformation and failure mechanisms of polyurea aerogels (PUAs) were investigated using a multi-scale approach that combines nanoindentation, analytical and computational modeling. The atomistic structure of primary particles of PUAs and their mechanical interactions were investigated with molecular dynamics simulations. From nanoindentation we identified four deformation and failure modes: free ligament buckling, cell ligament bending, stable cell collapsing, and ligament crush induced strain hardening. The corresponding structural evolution during indentation and strain hardening were analyzed and modeled. The material scaling properties were found to be dependent on both the relative density and the secondary particle size of PUAs. Using a porosity-dependent material constitutive model, a linear relationship was found between the strain hardening index and secondary particle size instead the conventional power-law relationship. Finally, the structural efficiency of PUAs with respect to the capability for energy absorption is evaluated as a function of structural parameters and base polymeric material properties.

9.
ACS Appl Mater Interfaces ; 10(27): 23321-23334, 2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29947503

ABSTRACT

Thermodynamic-kinetic relationships are not uncommon, but rigorous correlations are rare. On the basis of the parabolic free-energy profiles of elastic deformation, a generalized Marcus-type thermodynamic-kinetic relationship was identified between the shape recovery rate, Rt( N), and the elastic modulus, E, in poly(isocyanurate-urethane) shape memory aerogels. The latter were prepared with mixtures of diethylene, triethylene, and tetraethylene glycol and an aliphatic triisocyanate. Synthetic conditions were selected using a statistical design of experiments method. Microstructures obtained in each formulation could be put into two groups, one consisting of micron-size particles connected with large necks and a second one classified as bicontinuous. The two types of microstructures could be explained consistently by spinodal decomposition involving early versus late phase separation relative to the gel point. Irrespective of microstructure, all samples showed a shape memory effect with shape fixity and shape recovery ratios close to 100%. Larger variations (0.35-0.71) in the overall figure of merit, the fill factor, were traced to a variability in the shape recovery rates, Rt( N), which in turn were related to the microstructure. Materials with bicontinuous microstructures were stiffer and showed slower recovery rates. Thereby, using the elastic modulus, E, as a proxy for microstructure, the correlation of Rt( N) with E was traced to a relationship between the activation barrier for shape recovery, Δ A#, and the specific energy of deformation, (reorganization energy, λ), which in turn is proportional to the elastic modulus. Data were fitted well ( R2 = 0.92) by the derived equations. The inverse correlation between Rt( N) and the elastic modulus, E, provides a means for qualitative predictability of the shape recovery rates, the fill factors, and the overall quality of the shape memory effect.

10.
RSC Adv ; 8(38): 21214-21223, 2018 Jun 08.
Article in English | MEDLINE | ID: mdl-35539905

ABSTRACT

Scalable, low-density and flexible aerogels offer a unique combination of excellent mechanical properties and scalable manufacturability. Herein, we report the fabrication of a family of low-density, ambient-dried and hydrophobic poly(isocyanurate-urethane) aerogels derived from a triisocyanate precursor. The bulk densities ranged from 0.28 to 0.37 g cm-3 with porosities above 70% v/v. The aerogels exhibit a highly stretchable behavior with a rapid increase in the Young's modulus with bulk density (slope of log-log plot > 6.0). In addition, the aerogels are very compressible (more than 80% compressive strain) with high shape recovery rate (more than 80% recovery in 30 s). Under tension even at high strains (e.g., more than 100% tensile strain), the aerogels at lower densities do not display a significant lateral contraction and have a Poisson's ratio of only 0.22. Under dynamic conditions, the properties (e.g., complex moduli and dynamic stress-strain curves) are highly frequency- and rate-dependent, particularly in the Hopkinson pressure bar experiment where in comparison with quasi-static compression results, the properties such as mechanical strength were three orders of magnitude stiffer. The attained outcome of this work supports a basis on the understanding of the fundamental mechanical behavior of a scalable organic aerogel with potential in engineering applications including damping, energy absorption, and substrates for flexible devices.

11.
ACS Appl Mater Interfaces ; 9(15): 13520-13536, 2017 Apr 19.
Article in English | MEDLINE | ID: mdl-28379692

ABSTRACT

Polymeric aerogels (PA-xx) were synthesized via room-temperature reaction of an aromatic triisocyanate (tris(4-isocyanatophenyl) methane) with pyromellitic acid. Using solid-state CPMAS 13C and 15N NMR, it was found that the skeletal framework of PA-xx was a statistical copolymer of polyamide, polyurea, polyimide, and of the primary condensation product of the two reactants, a carbamic-anhydride adduct. Stepwise pyrolytic decomposition of those components yielded carbon aerogels with both open and closed microporosity. The open micropore surface area increased from <15 m2 g-1 in PA-xx to 340 m2 g-1 in the carbons. Next, reactive etching at 1,000 °C with CO2 opened access to the closed pores and the micropore area increased by almost 4× to 1150 m2 g-1 (out of 1750 m2 g-1 of a total BET surface area). At 0 °C, etched carbon aerogels demonstrated a good balance of adsorption capacity for CO2 (up to 4.9 mmol g-1), and selectivity toward other gases (via Henry's law). The selectivity for CO2 versus H2 (up to 928:1) is suitable for precombustion fuel purification. Relevant to postcombustion CO2 capture and sequestration (CCS), the selectivity for CO2 versus N2 was in the 17:1 to 31:1 range. In addition to typical factors involved in gas sorption (kinetic diameters, quadrupole moments and polarizabilities of the adsorbates), it is also suggested that CO2 is preferentially engaged by surface pyridinic and pyridonic N on carbon (identified with XPS) in an energy-neutral surface reaction. Relatively high uptake of CH4 (2.16 mmol g-1 at 0 °C/1 bar) was attributed to its low polarizability, and that finding paves the way for further studies on adsorption of higher (i.e., more polarizable) hydrocarbons. Overall, high CO2 selectivities, in combination with attractive CO2 adsorption capacities, low monomer cost, and the innate physicochemical stability of carbon render the materials of this study reasonable candidates for further practical consideration.

12.
ACS Appl Mater Interfaces ; 6(9): 6872-82, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24758407

ABSTRACT

Polyurea (PUA) develops H-bonding with water and is inherently hydrophilic. The water contact angle on smooth dense PUA derived from an aliphatic triisocyanate and water was measured at θ=69.1±0.2°. Nevertheless, texture-related superhydrophobic PUA aerogels (θ'=150.2°) were prepared from the same monomer in one step with no additives, templates, or surfactants via sol-gel polymerization carried out in polar, weakly H-bonding acetonitrile. Those materials display a unique nanostructure consisting of micrometer-size spheres distributed randomly and trapped in a nanofiber web of the same polymer. Morphostructurally, as well as in terms of their hydrophobic properties, those PUA aerogels are analogous to well-studied electrospun fiber mats incorporating particle-like defects. PUA aerogels have the advantage of easily scalable synthesis and low cost of the raw materials. Despite large contact angles and small contact areas, water droplets (5 µL) stick to the aerogels surface when the substrate is turned upside-down. That so-called Petal effect is traced to H-bonding at the points of contact between the water droplet and the apexes of the roughness of the aerogel surface. Monoliths are flexible and display oleophilicity in inverse order to their hydrophobicity; oil fills all the available open porosity (94% v/v) of cocoon-in-web like aerogels with bulk density ρb=0.073 g cm(-3); that capacity for oil absorption is >10:1 w/w and translates into ∼6:1 w/v relative to state-of-the-art materials (e.g., graphene-derived aerogels). Oil soaked monoliths float on water and can be harvested off.

13.
ACS Appl Mater Interfaces ; 6(7): 4891-902, 2014 Apr 09.
Article in English | MEDLINE | ID: mdl-24665966

ABSTRACT

Biocompatible dysprosia aerogels were synthesized from DyCl3·6H2O and were reinforced mechanically with a conformal nano-thin-polyurea coating applied over their skeletal framework. The random mesoporous space of dysprosia aerogels was filled up to about 30% v/v with paracetamol, indomethacin, or insulin, and the drug release rate was monitored spectrophotometrically in phosphate buffer (pH = 7.4) or 0.1 M aqueous HCl. The drug uptake and release study was conducted comparatively with polyurea-crosslinked random silica aerogels, as well as with as-prepared (native) and polyurea-crosslinked mesoporous silica perforated with ordered 7 nm tubes in hexagonal packing. Drug uptake from random nanostructures (silica or dysprosia) was higher (30-35% w/w) and the release rate was slower (typically >20 h) relative to ordered silica (19-21% w/w, <1.5 h, respectively). Drug release data from dysprosia aerogels were fitted with a flux equation consisting of three additive terms that correspond to drug stored successively in three hierarchical pore sites on the skeletal framework. The high drug uptake and slow release from dysprosia aerogels, in combination with their low toxicity, strong paramagnetism, and the possibility for neutron activation render those materials attractive multifunctional vehicles for site-specific drug delivery.


Subject(s)
Acetaminophen/chemistry , Drug Carriers/chemistry , Drug Delivery Systems/instrumentation , Dysprosium/chemistry , Indomethacin/chemistry , Insulin/chemistry , Silicon Dioxide/chemistry , Acetaminophen/pharmacology , Blood Platelets/drug effects , Blood Platelets/physiology , Gels/chemistry , Humans , Indomethacin/pharmacology , Insulin/pharmacology , Porosity
14.
J Org Chem ; 78(17): 8297-304, 2013 Sep 06.
Article in English | MEDLINE | ID: mdl-23952066

ABSTRACT

(1)H NMR, ESI-MS, and DFT calculations with the M062X/6-31G* method show that, in water, the bistetrafluoroborate salt of N,N'-dimethyl-2,6-diaza-9,10-anthraquinonediium dication (DAAQ·2BF4(-)) exists in equilibrium with both its gem-diol and several aggregates (from dimers to at least octamers). With high concentrations of HCl (e.g., 1.2-1.5 M), all aggregates break up and the keto-to-gem-diol equilibrium is shifted quantitatively toward the quinone form. The same effect is observed with 1.5 mol equiv of cucurbit[7]uril, CB[7], with which all equilibria are shifted toward the quinone form, which undergoes slow exchange with the CB[7] cavity as both the free and the CB[7]-intercalated quinone (DAAQ@CB[7]) are observed simultaneously by (1)H NMR. The affinity of DAAQ for the CB[7] cavity (Keq = 4 × 10(6) M(-1)) is in the range found for tricyclic dyes (0.4-5.4 × 10(6) M(-1)), and among the highest observed to date. A computational comparative study of the corresponding CB[7] complex of the N,N'-dimethyl-4,4'-bipyridinium dication (N,N'-dimethyl viologen, MeV) suggests that the higher binding constant for intercalation of DAAQ may be partially attributed to a lesser distortion of CB[7] (required to maximize favorable nonbonding interactions) as a result of the flat geometry of DAAQ.


Subject(s)
Alcohols/chemistry , Bridged-Ring Compounds/chemistry , Imidazoles/chemistry , Isoquinolines/chemistry , Ketones/chemistry , Quinones/chemistry , Cations/chemistry , Crystallography, X-Ray , Models, Molecular , Molecular Structure , Quantum Theory
15.
PLoS One ; 8(6): e66348, 2013.
Article in English | MEDLINE | ID: mdl-23799093

ABSTRACT

BACKGROUND: Polyurea crosslinked silica aerogels are highly porous, lightweight, and mechanically strong materials with great potential for in vivo applications. Recent in vivo and in vitro studies have demonstrated the biocompatibility of this type of aerogel. The highly porous nature of aerogels allows for exceptional thermal, electric, and acoustic insulating capabilities that can be taken advantage of for non-invasive external imaging techniques. Sound-based detection of implants is a low cost, non-invasive, portable, and rapid technique that is routinely used and readily available in major clinics and hospitals. METHODOLOGY: In this study the first in vivo ultrasound response of polyurea crosslinked silica aerogel implants was investigated by means of a GE Medical Systems LogiQe diagnostic ultrasound machine with a linear array probe. Aerogel samples were inserted subcutaneously and sub-muscularly in a) fresh animal model and b) cadaveric human model for analysis. For comparison, samples of polydimethylsiloxane (PDMS) were also imaged under similar conditions as the aerogel samples. CONCLUSION/SIGNIFICANCE: Polyurea crosslinked silica aerogel (X-Si aerogel) implants were easily identified when inserted in either of the regions in both fresh animal model and cadaveric model. The implant dimensions inferred from the images matched the actual size of the implants and no apparent damage was sustained by the X-Si aerogel implants as a result of the ultrasonic imaging process. The aerogel implants demonstrated hyperechoic behavior and significant posterior shadowing. Results obtained were compared with images acquired from the PDMS implants inserted at the same location.


Subject(s)
Polymers/chemistry , Prostheses and Implants , Silicon Dioxide/chemistry , Abdominal Muscles/diagnostic imaging , Animals , Female , Gels , Humans , Materials Testing , Rats , Rats, Sprague-Dawley , Subcutaneous Tissue/diagnostic imaging , Ultrasonography
16.
PLoS One ; 7(12): e50686, 2012.
Article in English | MEDLINE | ID: mdl-23251378

ABSTRACT

BACKGROUND: Aerogels are a versatile group of nanostructured/nanoporous materials with physical and chemical properties that can be adjusted to suit the application of interest. In terms of biomedical applications, aerogels are particularly suitable for implants such as membranes, tissue growth scaffolds, and nerve regeneration and guidance inserts. The mesoporous nature of aerogels can also be used for diffusion based release of drugs that are loaded during the drying stage of the material. From the variety of aerogels polyurea crosslinked silica aerogels have the most potential for future biomedical applications and are explored here. METHODOLOGY: This study assessed the short and long term biocompatibility of polyurea crosslinked silica aerogel implants in a Sprague-Dawley rat model. Implants were inserted at two different locations a) subcutaneously (SC), at the dorsum and b) intramuscularly (IM), between the gluteus maximus and biceps femoris of the left hind extremity. Nearby muscle and other internal organs were evaluated histologically for inflammation, tissue damage, fibrosis and movement (travel) of implant. CONCLUSION/SIGNIFICANCE: In general polyurea crosslinked silica aerogel (PCSA) was well tolerated as a subcutaneous and an intramuscular implant in the Sprague-Dawley rat with a maximum incubation time of twenty months. In some cases a thin fibrous capsule surrounded the aerogel implant and was interpreted as a normal response to foreign material. No noticeable toxicity was found in the tissues surrounding the implants nor in distant organs. Comparison was made with control rats without any implants inserted, and animals with suture material present. No obvious or noticeable changes were sustained by the implants at either location. Careful necropsy and tissue histology showed age-related changes only. An effective sterilization technique for PCSA implants as well as staining and sectioning protocol has been established. These studies further support the notion that silica-based aerogels could be useful as biomaterials.


Subject(s)
Biocompatible Materials/chemistry , Polymers/chemistry , Prostheses and Implants , Silicon Dioxide/chemistry , Animals , Materials Testing , Pilot Projects , Prosthesis Implantation/methods , Rats , Rats, Sprague-Dawley
17.
PLoS One ; 7(3): e33242, 2012.
Article in English | MEDLINE | ID: mdl-22448239

ABSTRACT

BACKGROUND: Polymer crosslinked aerogels are an attractive class of materials for future implant applications particularly as a biomaterial for the support of nerve growth. The low density and nano-porous structure of this material combined with large surface area, high mechanical strength, and tunable surface properties, make aerogels materials with a high potential in aiding repair of injuries of the peripheral nervous system. however, the interaction of neurons with aerogels remains to be investigated. METHODOLOGY: In this work the attachment and growth of neurons on clear polyurea crosslinked silica aerogels (PCSA) coated with: poly-L-lysine, basement membrane extract (BME), and laminin1 was investigated by means of optical and scanning electron microscopy. After comparing the attachment and growth capability of neurons on these different coatings, laminin1 and BME were chosen for nerve cell attachment and growth on PCSA surfaces. The behavior of neurons on treated petri dish surfaces was used as the control and behavior of neurons on treated PCSA discs was compared against it. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that: 1) untreated PCSA surfaces do not support attachment and growth of nerve cells, 2) a thin application of laminin1 layer onto the PCSA discs adhered well to the PCSA surface while also supporting growth and differentiation of neurons as evidenced by the number of processes extended and b3-tubulin expression, 3) three dimensional porous structure of PCSA remains intact after fixing protocols necessary for preservation of biological samples and 4) laminin1 coating proved to be the most effective method for attaching neurons to the desired regions on PCSA discs. This work provides the basis for potential use of PCSA as a biomaterial scaffold for neural regeneration.


Subject(s)
Biocompatible Materials , Neurons/cytology , Neurons/metabolism , Polymers/chemistry , Silicon Dioxide/chemistry , Animals , Cell Differentiation , Cells, Cultured , Fluorescent Antibody Technique , Ganglia, Spinal/cytology , Ganglia, Spinal/metabolism , Gels , Laminin/metabolism , Materials Testing , Microscopy, Electron, Scanning , Neurogenesis , Pilot Projects , Polymers/metabolism , Rats , Surface Properties
18.
J Org Chem ; 77(5): 2263-71, 2012 Mar 02.
Article in English | MEDLINE | ID: mdl-22339810

ABSTRACT

According to recent reports, supramolecular complexes of the pyrylium cation with cucurbit[x]urils (CB[x], x = 7, 8) show promising photoluminescence suitable for electroluminescent devices. In turn, photoluminescence seems to be related to the stereochemistry of the complexes; however, that has been controversial. Here, we report that in H(2)O, 2,6-disubsituted-4-phenyl pyryliums (Pylm) form dimers quantitatively (equilibrium constants >10(4) M(-1)), but they enter as such only in the larger CB[8]. In terms of orientation, (1)H NMR shows that Me-Pylm, Ph-Pylm, and t-Bu-Pylm insert their 4-phenyl groups in either the CB[7] or CB[8] cavity. The orientation of iPr-Pylm in the iPr-Pylm@CB[7] complex is similar. Experimental conclusions are supported by DFT calculations using the M062X functional and the 6-31G(d) basis set. In the case of (iPr-Pylm)(2)@CB[8], (1)H NMR of both the guest and the host indicates that both guests might enter CB[8] from the same side with their iPr groups in the cavity, but DFT calculations leave room for ambiguity. In addition to the size and hydrophobicity of the 2,6-substituents of the guests, as well as the size and flexibility of the hosts, theory reveals the importance of explicit solvation (H(2)O) and finite temperature effects (particularly for (1)H NMR shielding calculations) in the determination of the stereochemistry of those complexes.


Subject(s)
Bridged-Ring Compounds/chemistry , Imidazoles/chemistry , Pyrans/chemistry , Models, Molecular , Molecular Structure , Quantum Theory
19.
J Biomater Sci Polym Ed ; 23(9): 1171-84, 2012.
Article in English | MEDLINE | ID: mdl-21619731

ABSTRACT

The process to successfully synthesize polybenzoxazine (PBO)-based aerogels has recently been optimized; however, the biocompatibility of these materials has never been investigated. PBO is synthesized from bisphenol A and aniline, which are both precursors to many commonly used biomaterials, including polyurethane. Surface-wise these new aerogels resemble the innate extracellular matrix of bone and if these new aerogels exhibit acceptable biocompatibility, they may be used as a scaffold for bone tissue engineering. Here, we aimed to characterize some of the physical properties of PBO aerogels, PBO aerogels co-polymerized with resorcinol and formaldehyde (RF) and their conversion to carbon aerogel, while determining the compatibility of all of these materials towards human osteoblasts. Biocompatibility was determined with a live/dead cell cytotoxicity assay, a metabolic activity assay, alkaline phosphatase activity and osteocalcin production, after incubation with PBO-based aerogels for up to 5 days. PBO aerogels co-polymerized with RF tended to have a low density, porosity and elastic modulus and provided the weakest substrate for bone cell growth. PBO-derived carbon aerogels tended to have a high density, a large porosity and improved mechanical properties and provided the best substrate for bone cell growth. These results suggest that PBO based carbon aerogels have a suitable biocompatibility towards osteoblasts and that they may be able to be used for bone tissue engineering scaffolds.


Subject(s)
Benzoxazines/chemistry , Bone Substitutes/chemistry , Gels/chemistry , Polymers/chemistry , Tissue Scaffolds/chemistry , Alkaline Phosphatase/metabolism , Aniline Compounds/chemistry , Benzhydryl Compounds/chemistry , Benzoxazines/chemical synthesis , Bone Substitutes/chemical synthesis , Cell Death , Cell Proliferation , Cells, Cultured , Elastic Modulus , Formaldehyde/chemistry , Gels/chemical synthesis , Humans , Materials Testing , Osteoblasts/physiology , Osteocalcin/metabolism , Phenols/chemistry , Polymerization , Polymers/chemical synthesis , Porosity , Resorcinols/chemical synthesis , Resorcinols/chemistry , Skull/physiology , Tissue Engineering/methods
20.
J Biomed Mater Res A ; 92(4): 1431-9, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-19358258

ABSTRACT

The recently synthesized polyurea-nanoencapsulated surfactant-templated aerogels (X-aerogels) are porous materials with significantly improved mechanical strengths. Surface-wise they resemble polyurethane, a common biocompatible material, but their biocompatibility has never been investigated. As lightweight and strong materials, if X-aerogels also have acceptable biocompatibility, they may be used in many implantable devices. The goal of this study was to investigate their biocompatibility toward platelets, blood plasma, and vascular endothelial cells, in terms of cell activation and inflammatory responses. Platelets were incubated with X-aerogel and platelet activation was measured through CD62P and phosphatidylserine expression. Platelet aggregation was also measured. Contact with X-aerogel did not induce platelet activation or impair aggregation. To determine X-aerogel-induced inflammation, plasma anaphylatoxin C3a level was measured after incubation with X-aerogel. Results showed that X-aerogel induced no changes in plasma C3a levels. SEM and SDS-PAGE were used to examine cellular/protein deposition on X-aerogel samples after plasma incubation. No structural change or organic deposition was detected. Furthermore, X-aerogel samples did not induce any significant changes in vascular endothelial cell culture parameters after 5 days of incubation. These observations suggest that X-aerogels have a suitable biocompatibility toward platelets, plasma, and vascular endothelial cells, and they have potential for use in blood implantable devices.


Subject(s)
Biocompatible Materials , Blood Platelets/metabolism , Endothelial Cells/metabolism , Gels/chemistry , Gels/metabolism , Nanocapsules/chemistry , Polymers/chemistry , Silicon Dioxide/chemistry , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/metabolism , Blood Platelets/cytology , Blood Platelets/drug effects , Cells, Cultured , Complement C3/immunology , Drug Compounding , Endothelial Cells/cytology , Gels/pharmacology , Humans , Materials Testing , Plasma/metabolism , Platelet Aggregation/drug effects , Polymers/metabolism , Silicon Dioxide/metabolism , Surface Properties , Surface-Active Agents/chemistry , Surface-Active Agents/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...