Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Life Sci ; 59(6): 909-19, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12169021

ABSTRACT

The hepatitis C viruses (HCVs) are a group of small enveloped RNA viruses that have been viewed as a leading cause of chronic hepatitis in humans. Infections by HCV represent a serious global health problem, because millions of people worldwide are infected and no efficient treatment is available at the present time. Since HCV was identified in 1989, considerable effort has been devoted to the discovery and development of novel molecules to treat HCV-related diseases. One of the approaches is the development of novel inhibitors that interrupt the normal functions of HCV NS5B, an RNA-dependent RNA polymerase essential to HCV replication. This review summarizes recent advances in the biochemical and structural understanding of HCV NS5B polymerase as well as in the development of antiviral agents targeting this important enzyme.


Subject(s)
Hepacivirus/enzymology , RNA-Dependent RNA Polymerase/metabolism , Viral Nonstructural Proteins/metabolism , Amino Acid Sequence , Animals , Catalytic Domain , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Humans , Models, Chemical , Models, Molecular , Molecular Sequence Data , Protein Conformation , RNA Nucleotidyltransferases/metabolism
2.
Biochemistry ; 40(35): 10586-91, 2001 Sep 04.
Article in English | MEDLINE | ID: mdl-11524001

ABSTRACT

The redox potential of human manganese superoxide dismutase (MnSOD) has been difficult to determine because of the problem of finding suitable electron mediators. We have found that ferricyanide and pentacyanoaminoferrate can be used as electron mediators, although equilibration is very slow with a half-time near 6 h. Values of the midpoint potential were determined both by allowing enzyme and mediators to equilibrate up to 38 h and by reductive titration adding dithionite to enzyme and mediator. An overall value of the midpoint potential was found to be 393 +/- 29 mV. To elucidate the role of His30 and Tyr34 in the active site of human MnSOD, we have also measured the redox properties of the site-specific mutants His30Asn (H30N) and Tyr34Phe (Y34F) and compared them with the wild-type enzyme. Crystal structures have shown that each mutation interrupts a hydrogen bond network in the active site, and each causes a 10-fold decrease in the maximal velocity of catalysis of superoxide dismutation as compared with wild type. The present study shows that H30N and Y34F human MnSOD have very little effect, within experimental uncertainty, on the redox potential of the active-site metal. The redox potentials determined electrochemically were 365 +/- 28 mV for H30N and 435 +/- 30 mV for Y34F MnSOD. These results suggest that the role of His30 and Tyr34 is more in support of catalysis, probably proton transport, and not in the tuning of the redox potential.


Subject(s)
Superoxide Dismutase/chemistry , Binding Sites , Cloning, Molecular , Escherichia coli , Humans , Mutagenesis, Site-Directed , Oxidation-Reduction , Recombinant Proteins , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Titrimetry
3.
Biochemistry ; 39(24): 7131-7, 2000 Jun 20.
Article in English | MEDLINE | ID: mdl-10852710

ABSTRACT

Glutamine 143 in human manganese superoxide dismutase (MnSOD) forms a hydrogen bond with the manganese-bound solvent molecule and is investigated by replacement using site-specific mutagenesis. Crystal structures showed that the replacement of Gln 143 with Ala made no significant change in the overall structure of the mutant enzyme. Two new water molecules in Q143A MnSOD were situated in positions nearly identical with the Oepsilon1 and Nepsilon2 of the replaced Gln 143 side chain and maintained a hydrogen-bonded network connecting the manganese-bound solvent molecule to other residues in the active site. However, their presence could not sustain the stability and activity of the enzyme; the main unfolding transition of Q143A was decreased 16 degrees C and its catalysis decreased 250-fold to k(cat)/K(m) = 3 x 10(6) M(-)(1) s(-)(1), as determined by stopped-flow spectrophotometry and pulse radiolysis. The mutant Q143A MnSOD and other mutants at position 143 showed very low levels of product inhibition and favored Mn(II)SOD in the resting state, whereas the wild type showed strong product inhibition and favored Mn(III)SOD. However, these differences did not affect the rate constant for dissociation of the product-inhibited complex in Q143A MnSOD which was determined from a characteristic absorbance at 420 nm and was comparable in magnitude ( approximately 100 s(-)(1)) to that of the wild-type enzyme. Hence, Gln 143, which is necessary for maximal activity in superoxide dismutation, appears to have no role in stabilization and dissociation of the product-inhibited complex.


Subject(s)
Glutamine/chemistry , Superoxide Dismutase/chemistry , Binding Sites , Calorimetry, Differential Scanning , Crystallography, X-Ray , Enzyme Stability , Glutamine/genetics , Humans , Hydrogen Bonding , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Protein Folding , Pulse Radiolysis , Spectrophotometry , Superoxide Dismutase/genetics , Temperature , Water/chemistry
4.
Biochemistry ; 38(36): 11686-92, 1999 Sep 07.
Article in English | MEDLINE | ID: mdl-10512624

ABSTRACT

Tryptophan 161 is a highly conserved residue that forms a hydrophobic side of the active site cavity of manganese superoxide dismutase (MnSOD), with its indole ring adjacent to and about 5 A from the manganese. We have made a mutant containing the conservative replacement Trp 161 --> Phe in human MnSOD (W161F MnSOD), determined its crystal structure, and measured the catalysis of the resulting mutant using pulse radiolysis to produce O(2)(*)(-). In the structure of W161F MnSOD the phenyl side chain of Phe 161 superimposes on the indole ring of Trp 161 in the wild type. However, in the mutant, the hydroxyl side chain of Tyr 34 is 3.9 A from the manganese, closer by 1.2 A than in the wild type. The tryptophan in MnSOD is not essential for the half-cycle of catalytic activity involving reduction of the manganese; the mutant W161F MnSOD had k(cat)/K(m) at 2.5 x 10(8) M(-)(1) s(-)(1), reduced only 3-fold compared with wild type. However, this mutant exhibited a strong product inhibition with a zero-order region of superoxide decay slower by 10-fold compared with wild type. The visible absorption spectrum of W161F MnSOD in the inhibited state was very similar to that observed for the inhibited wild-type enzyme. The appearance of the inhibited form required reaction of 2 molar equiv of O(2)(*)(-) with W161F Mn(III)SOD, one to form the reduced state of the metal and the second to form the inhibited complex, confirming that the inhibited complex requires reaction of O(2)(*)(-) with the reduced form of the enzyme. This work suggests that a significant role of Trp 161 in the active site is to promote the dissociation of product peroxide, perhaps in part through its effect on the orientation of Tyr 34.


Subject(s)
Superoxide Dismutase/metabolism , Tryptophan/metabolism , Binding Sites , Catalysis , Crystallography, X-Ray , Humans , Models, Molecular , Protein Conformation , Superoxide Dismutase/antagonists & inhibitors , Superoxide Dismutase/chemistry
5.
J Biol Chem ; 274(39): 27711-6, 1999 Sep 24.
Article in English | MEDLINE | ID: mdl-10488113

ABSTRACT

Histidine 30 in human manganese superoxide dismutase (MnSOD) is located at a site partially exposed to solvent with its side chain participating in a hydrogen-bonded network that includes the active-site residues Tyr(166) and Tyr(34) and extends to the manganese-bound solvent molecule. We have replaced His(30) with a series of amino acids and Tyr(166) with Phe in human MnSOD. The crystal structure of the mutant of MnSOD containing Asn(30) superimposed closely with the wild type, but the side chain of Asn(30) did not participate in the hydrogen-bonded network in the active site. The catalytic activity of a number of mutants with replacements at position 30 and for the mutant containing Phe(166) showed a 10-40-fold decrease in k(cat). This is the same magnitude of decrease in k(cat) obtained with the replacement of Tyr(34) by Phe, suggesting that interrupting the hydrogen-bonded active-site network at any of the sites of these three participants (His(30), Tyr(34), and Tyr(166)) leads to an equivalent decrease in k(cat) and probably less efficient proton transfer to product peroxide. The specific geometry of His(30) on the hydrogen bond network is essential for stability since the disparate mutations H30S, H30A, and H30Q reduce T(m) by similar amounts (10-16 degrees C) compared with wild type.


Subject(s)
Superoxide Dismutase/chemistry , Superoxide Dismutase/metabolism , Amino Acid Substitution , Asparagine , Binding Sites , Crystallography, X-Ray , Histidine , Humans , Hydrogen Bonding , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Kinetics , Least-Squares Analysis , Models, Molecular , Mutagenesis, Site-Directed , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Superoxide Dismutase/genetics , Tyrosine
SELECTION OF CITATIONS
SEARCH DETAIL
...