Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Eur J Neurosci ; 55(6): 1504-1518, 2022 03.
Article in English | MEDLINE | ID: mdl-35229373

ABSTRACT

The dorsal periaqueductal grey (PAG) is an important site for integrating predatory threats. However, it remains unclear whether predator-related activation in PAG primarily reflects threat itself and thus can distinguish between various degrees of threat, or rather reflects threat-oriented behaviours, with the PAG potentially orchestrating different types of defensive repertoire. To address this issue, we performed extracellular recording of dorsal PAG neurons in freely behaving rats and examined neuronal and behavioural responses to stimulus conditions with distinct levels of predatory threat. Animals were sequentially exposed to a nonthreatening stimulus familiar environment (exposure to habituated environment) and to a novel nonthreatening stimulus (i.e., a toy animal-plush) and to conditions with high (exposure to a live cat), intermediate (exposure to the environment just visited by the cat, with remnant predator scent), and low (exposure on the following day to the predatory context) levels of predatory threat. To test for contributions of both threat stimuli and behaviour to changes in firing rate, we applied a Poisson generalized linear model regression, using the different predator stimulus conditions and defensive repertoires as predictor variables. Analysis revealed that the different predator stimulus conditions were more predictive of changes in firing rate (primarily threat-induced increases) than the different defensive repertoires. Thus, the dorsal PAG may code for different levels of predatory threat, more than it directly orchestrates distinct threat-oriented behaviours. The present results open interesting perspectives to investigate the role of the dorsal PAG in mediating primal emotional and cognitive responses to fear-inducing stimuli.


Subject(s)
Fear , Periaqueductal Gray , Animals , Fear/physiology , Neurons/physiology , Periaqueductal Gray/physiology , Predatory Behavior/physiology , Rats , Rats, Wistar
2.
Front Syst Neurosci ; 16: 998116, 2022.
Article in English | MEDLINE | ID: mdl-36817946

ABSTRACT

Hippocampal theta frequency is a somewhat neglected topic relative to theta power, phase, coherence, and cross-frequency coupling. Accordingly, here we review and present new data on variation in hippocampal theta frequency, focusing on functional associations (temporal coding, anxiety reduction, learning, and memory). Taking the rodent hippocampal theta frequency to running-speed relationship as a model, we identify two doubly-dissociable frequency components: (a) the slope component of the theta frequency-to-stimulus-rate relationship ("theta slope"); and (b) its y-intercept frequency ("theta intercept"). We identify three tonic determinants of hippocampal theta frequency. (1) Hotter temperatures increase theta frequency, potentially consistent with time intervals being judged as shorter when hot. Initial evidence suggests this occurs via the "theta slope" component. (2) Anxiolytic drugs with widely-different post-synaptic and pre-synaptic primary targets share the effect of reducing the "theta intercept" component, supporting notions of a final common pathway in anxiety reduction involving the hippocampus. (3) Novelty reliably decreases, and familiarity increases, theta frequency, acting upon the "theta slope" component. The reliability of this latter finding, and the special status of novelty for learning, prompts us to propose a Novelty Elicits Slowing of Theta frequency (NEST) hypothesis, involving the following elements: (1) Theta frequency slowing in the hippocampal formation is a generalised response to novelty of different types and modalities; (2) Novelty-elicited theta slowing is a hippocampal-formation-wide adaptive response functioning to accommodate the additional need for learning entailed by novelty; (3) Lengthening the theta cycle enhances associativity; (4) Even part-cycle lengthening may boost associativity; and (5) Artificial theta stimulation aimed at enhancing learning should employ low-end theta frequencies.

3.
Nat Neurosci ; 24(2): 266-275, 2021 02.
Article in English | MEDLINE | ID: mdl-33349710

ABSTRACT

Successfully navigating in physical or semantic space requires a neural representation of allocentric (map-based) vectors to boundaries, objects and goals. Cognitive processes such as path-planning and imagination entail the recall of vector representations, but evidence of neuron-level memory for allocentric vectors has been lacking. Here, we describe a novel neuron type, vector trace cell (VTC), whose firing generates a new vector field when a cue is encountered and a 'trace' version of that field for hours after cue removal. VTCs are concentrated in subiculum, distal to CA1. Compared to non-trace cells, VTCs fire at further distances from cues and exhibit earlier-going shifts in preferred theta phase in response to newly introduced cues, which demonstrates a theta-linked neural substrate for memory encoding. VTCs suggest a vector-based model of computing spatial relationships between an agent and multiple spatial objects, or between different objects, freed from the constraints of direct perception of those objects.


Subject(s)
Action Potentials/physiology , Hippocampus/cytology , Neurons/cytology , Space Perception/physiology , Animals , Cues , Hippocampus/physiology , Male , Neurons/physiology , Rats , Spatial Navigation/physiology
4.
Sci Rep ; 10(1): 7508, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32371918

ABSTRACT

The original provocative formulation of the 'geometric module' hypothesis was based on a working-memory task in rats which suggested that spontaneous reorientation behavior is based solely on the environmental geometry and is impervious to featural cues. Here, we retested that claim by returning to a spontaneous navigation task with rats and domestic chicks, using a single prominent featural cue (a striped wall) within a rectangular arena. Experiments 1 and 2 tested the influence of geometry and features separately. In Experiment 1, we found that both rats and chicks used environmental geometry to compute locations in a plain rectangular arena. In Experiment 2, while chicks failed to spontaneously use a striped wall in a square arena, rats showed a modest influence of the featural cue as a local marker to the goal. The critical third experiment tested the striped wall inside the rectangular arena. We found that although chicks solely relied on geometry, rats navigated based on both environmental geometry and the featural cue. While our findings with rats are contrary to classic claims of an impervious geometric module, they are consistent with the hypothesis that navigation by boundaries and features may involve distinct underlying cognitive computations. We conclude by discussing the similarities and differences in feature-use across tasks and species.


Subject(s)
Memory, Short-Term , Orientation/physiology , Space Perception/physiology , Animals , Behavior, Animal , Chickens , Cues , Male , Rats , Spatial Memory , Species Specificity
5.
Curr Top Behav Neurosci ; 45: 29-45, 2020.
Article in English | MEDLINE | ID: mdl-32462614

ABSTRACT

Whilst acetylcholine has long been linked to memory, there have been significant questions about its specific role. In particular, the effects of cholinergic manipulations in primates and rodents has often been at odds. Here, we review the work in primates and rodents on the specific function of acetylcholine in memory, and episodic memory in particular. We propose that patterns of impairment can best be understood in terms of a role for hippocampal acetylcholine in resolving spatial interference and we discuss the benefits of new tasks of episodic memory in animals allowing clearer translation of findings to the clinic.


Subject(s)
Acetylcholine , Memory, Episodic , Animals , Hippocampus , Primates , Recognition, Psychology , Rodentia
6.
Dis Model Mech ; 12(9)2019 09 24.
Article in English | MEDLINE | ID: mdl-31439589

ABSTRACT

We studied a new amyloid-beta precursor protein (App) knock-in mouse model of Alzheimer's disease (AppNL-G-F ), containing the Swedish KM670/671NL mutation, the Iberian I716F mutation and the Artic E693G mutation, which generates elevated levels of amyloid beta (Aß)40 and Aß42 without the confounds associated with APP overexpression. This enabled us to assess changes in anxiety-related and social behaviours, and neural alterations potentially underlying such changes, driven specifically by Aß accumulation. AppNL-G-F knock-in mice exhibited subtle deficits in tasks assessing social olfaction, but not in social motivation tasks. In anxiety-assessing tasks, AppNL-G-F knock-in mice exhibited: (1) increased thigmotaxis in the open field (OF), yet; (2) reduced closed-arm, and increased open-arm, time in the elevated plus maze (EPM). Their ostensibly anxiogenic OF profile, yet ostensibly anxiolytic EPM profile, could hint at altered cortical mechanisms affecting decision-making (e.g. 'disinhibition'), rather than simple core deficits in emotional motivation. Consistent with this possibility, alterations in microstructure, glutamatergic-dependent gamma oscillations and glutamatergic gene expression were all observed in the prefrontal cortex, but not the amygdala, of AppNL-G-F knock-in mice. Thus, insoluble Aß overexpression drives prefrontal cortical alterations, potentially underlying changes in social and anxiety-related behavioural tasks.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Anxiety/physiopathology , Behavior, Animal , Gamma Rhythm , Gene Knock-In Techniques , Prefrontal Cortex/physiopathology , Animals , Anisotropy , Disease Models, Animal , Female , Gene Expression Regulation , Male , Mice, Inbred C57BL , Mice, Transgenic , N-Methylaspartate/metabolism , Prefrontal Cortex/pathology , Receptors, N-Methyl-D-Aspartate/metabolism , Social Behavior , Solubility , Task Performance and Analysis
7.
Behav Brain Res ; 369: 111936, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31055057

ABSTRACT

The precise role played by the hippocampus in spatial learning tasks, such as the Morris Water Maze (MWM), is not fully understood. One theory is that the hippocampus is not required for 'knowing where' but rather is crucial in 'getting there'. To explore this idea in the MWM, we manipulated 'getting there' variables, such as passive transport or active swimming towards the hidden platform, in rats with and without hippocampal lesions. Our results suggested that for intact rats, self-motion cues enroute to the hidden goal were a necessary component for 'place learning' to progress. Specifically, intact rats could not learn the hidden goal location, when passively transported to it, despite extensive training. However, when rats were either given hippocampal lesions, or placed in a light-tight box during transportation to the hidden goal, passive-placement spatial learning was facilitated. In a subsequent experiment, the 'getting there' component of place navigation was simplified, via the placement of two overhead landmarks, one of which served as a beacon. When 'getting there' was made easier in this way, hippocampal lesions did not induce deficits in 'knowing where' the goal was. In fact, similar to the facilitation observed in passive-placement spatial learning, hippocampal lesions improved landmark learning relative to controls. Finally, demonstrating that our lesions were sufficiently deleterious, hippocampal-lesioned rats were impaired, as predicted, in an environmental-boundary based learning task. We interpret these results in terms of competition between multiple memory systems, and the importance of self-generated motion cues in hippocampal spatial mapping.


Subject(s)
Hippocampus/physiology , Space Perception/physiology , Spatial Learning/physiology , Animals , Brain/physiology , Cues , Male , Maze Learning/physiology , Memory/physiology , Rats , Rats, Inbred Strains , Swimming/physiology , Temporal Lobe/physiology
8.
Mol Autism ; 10: 8, 2019.
Article in English | MEDLINE | ID: mdl-30858964

ABSTRACT

Background: Of the many genetic mutations known to increase the risk of autism spectrum disorder, a large proportion cluster upon synaptic proteins. One such family of presynaptic proteins are the neurexins (NRXN), and recent genetic and mouse evidence has suggested a causative role for NRXN2 in generating altered social behaviours. Autism has been conceptualised as a disorder of atypical connectivity, yet how single-gene mutations affect such connectivity remains under-explored. To attempt to address this, we have developed a quantitative analysis of microstructure and structural connectivity leveraging diffusion tensor MRI (DTI) with high-resolution 3D imaging in optically cleared (CLARITY) brain tissue in the same mouse, applied here to the Nrxn2α knockout (KO) model. Methods: Fixed brains of Nrxn2α KO mice underwent DTI using 9.4 T MRI, and diffusion properties of socially relevant brain regions were quantified. The same tissue was then subjected to CLARITY to immunolabel axons and cell bodies, which were also quantified. Results: DTI revealed increases in fractional anisotropy in the amygdala (including the basolateral nuclei), the anterior cingulate cortex, the orbitofrontal cortex and the hippocampus. Axial diffusivity of the anterior cingulate cortex and orbitofrontal cortex was significantly increased in Nrxn2α KO mice, as were tracts between the amygdala and the orbitofrontal cortex. Using CLARITY, we find significantly altered axonal orientation in the amygdala, orbitofrontal cortex and the anterior cingulate cortex, which was unrelated to cell density. Conclusions: Our findings demonstrate that deleting a single neurexin gene (Nrxn2α) induces atypical structural connectivity within socially relevant brain regions. More generally, our combined within-subject DTI and CLARITY approach presents a new, more sensitive method of revealing hitherto undetectable differences in the autistic brain.


Subject(s)
Autism Spectrum Disorder/genetics , Brain/diagnostic imaging , Nerve Tissue Proteins/genetics , Animals , Autism Spectrum Disorder/diagnostic imaging , Diffusion Tensor Imaging , Gene Deletion , Imaging, Three-Dimensional , Male , Mice , Mice, Inbred C57BL
9.
Curr Biol ; 28(17): R1023-R1042, 2018 09 10.
Article in English | MEDLINE | ID: mdl-30205053

ABSTRACT

Mammals have evolved specialized brain systems to support efficient navigation within diverse habitats and over varied distances, but while navigational strategies and sensory mechanisms vary across species, core spatial components appear to be widely shared. This review presents common elements found in mammalian spatial mapping systems, focusing on the cells in the hippocampal formation representing orientational and locational spatial information, and 'core' mammalian hippocampal circuitry. Mammalian spatial mapping systems make use of both allothetic cues (space-defining cues in the external environment) and idiothetic cues (cues derived from self-motion). As examples of each cue type, we discuss: environmental boundaries, which control both orientational and locational neuronal activity and behaviour; and 'path integration', a process that allows the estimation of linear translation from velocity signals, thought to depend upon grid cells in the entorhinal cortex. Building cognitive maps entails sampling environments: we consider how the mapping system controls exploration to acquire spatial information, and how exploratory strategies may integrate idiothetic with allothetic information. We discuss how 'replay' may act to consolidate spatial maps, and simulate trajectories to aid navigational planning. Finally, we discuss grid cell models of vector navigation.


Subject(s)
Entorhinal Cortex/physiology , Grid Cells/physiology , Hippocampus/physiology , Mammals/physiology , Orientation/physiology , Spatial Navigation/physiology , Animals , Cues
10.
Neurosci Biobehav Rev ; 85: 65-80, 2018 02.
Article in English | MEDLINE | ID: mdl-28887226

ABSTRACT

The theta oscillation (5-10Hz) is a prominent behavior-specific brain rhythm. This review summarizes studies showing the multifaceted role of theta rhythm in cognitive functions, including spatial coding, time coding and memory, exploratory locomotion and anxiety-related behaviors. We describe how activity of hippocampal theta rhythm generators - medial septum, nucleus incertus and entorhinal cortex, links theta with specific behaviors. We review evidence for functions of the theta-rhythmic signaling to subcortical targets, including lateral septum. Further, we describe functional associations of theta oscillation properties - phase, frequency and amplitude - with memory, locomotion and anxiety, and outline how manipulations of these features, using optogenetics or pharmacology, affect associative and innate behaviors. We discuss work linking cognition to the slope of the theta frequency to running speed regression, and emotion-sensitivity (anxiolysis) to its y-intercept. Finally, we describe parallel emergence of theta oscillations, theta-mediated neuronal activity and behaviors during development. This review highlights a complex interplay of neuronal circuits and synchronization features, which enables an adaptive regulation of multiple behaviors by theta-rhythmic signaling.


Subject(s)
Behavior, Animal/physiology , Cognition/physiology , Emotions/physiology , Locomotion/physiology , Memory/physiology , Animals , Hippocampus/physiology , Humans
11.
Hippocampus ; 28(9): 644-658, 2018 09.
Article in English | MEDLINE | ID: mdl-29149774

ABSTRACT

Coding the distance to a future goal is an important function of a neural system supporting navigation. While some evidence indicates the hippocampus increases activity with proximity to the goal, others have found activity to decrease with proximity. To explore goal distance coding in the hippocampus we recorded from CA1 hippocampal place cells in rats as they navigated to learned goals in an event arena with a win-stay lose-shift rule. CA1 activity was positively correlated with the distance - decreasing with proximity to the goal. The stronger the correlation between distance to the goal and CA1 activity, the more successful navigation was in a given task session. Acceleration, but not speed, was also correlated with the distance to the goal. However, the relationship between CA1 activity and navigation performance was independent of variation in acceleration and variation in speed. These results help clarify the situations in which CA1 activity encodes navigationally relevant information and the extent to which it relates to behavior.


Subject(s)
CA1 Region, Hippocampal/physiology , Goals , Place Cells/physiology , Spatial Memory/physiology , Spatial Navigation/physiology , Action Potentials , Animals , Electrodes, Implanted , Executive Function/physiology , Exploratory Behavior/physiology , Male , Rats
12.
Front Neurol ; 7: 215, 2016.
Article in English | MEDLINE | ID: mdl-27990134

ABSTRACT

The hippocampus is one of the first regions to exhibit neurodegeneration in Alzheimer's disease (AD), and knowledge of its role in allocentric spatial memory may therefore aid early diagnosis of AD. The 4 Mountains Test (4MT) is a short and easily administered test of spatial memory based on the cognitive map theory of hippocampal function as derived from rodent single cell and behavioral studies. The 4MT has been shown in previous cross-sectional studies to be sensitive and specific for mild cognitive impairment (MCI) due to AD. This report describes the initial results of a longitudinal study testing the hypothesis that allocentric spatial memory is predictive of conversion from MCI to dementia. Fifteen patients with MCI underwent baseline testing on the 4MT in addition to CSF amyloid/tau biomarker studies, volumetric MRI and neuropsychological assessment including the Rey Auditory Verbal Learning Test (RAVLT) and Trail Making Test "B" (TMT-B). At 24 months, 9/15 patients had converted to AD dementia. The 4MT predicted conversion to AD with 93% accuracy (Cohen's d = 2.52). The predictive accuracies of the comparator measures were as follows: CSF tau/ß-amyloid1-42 ratio 92% (d = 1.81), RAVLT 64% (d = 0.41), TMT-B 78% (d = 1.56), and hippocampal volume 77% (d = 0.65). CSF tau levels were strongly negatively correlated with 4MT scores (r = -0.71). This proof-of-concept study provides initial support for the hypothesis that allocentric spatial memory testing is a predictive cognitive marker of hippocampal neurodegeneration in pre-dementia AD. The 4MT is a brief, non-invasive, straightforward spatial memory test and is therefore ideally suited for use in routine clinical diagnostic practice. This is of particular importance given the current unmet need for simple accurate diagnostic tests for early AD and the ongoing development of potential disease-modifying therapeutic agents, which may be more efficacious when given earlier in the disease course. By applying a test based on studies of hippocampal function in rodents to patient populations, this work represents the first step in the development of translatable biomarkers of hippocampal involvement in early AD for use in both animal models and human subjects.

13.
Behav Neurosci ; 129(6): 765-76, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26595880

ABSTRACT

The neurexins are a family of presynaptic cell adhesion molecules. Human genetic studies have found heterozygous deletions affecting NRXN1 and NRXN2, encoding α-neurexin I (Nrxn1α) and α-neurexin II (Nrxn2α), in individuals with autism spectrum disorders and schizophrenia. However, the link between α-neurexin deficiency and the manifestation of psychiatric disorders remain unclear. To assess whether the heterozygous loss of neurexins results in behaviors relevant to autism or schizophrenia, we used mice with heterozygous (HET) deletion of Nrxn1α or Nrxn2α. We found that in a test of social approach, Nrxn1α HET mice show no social memory for familiar versus novel conspecifics. In a passive avoidance test, female Nrxn1α HET mice cross to the conditioned chamber sooner than female wild-type and Nrxn2α HET mice. Nrxn2α HET mice also express a lack of long-term object discrimination, indicating a deficit in cognition. The observed Nrxn1α and Nrxn2α genotypic effects were specific, as neither HET deletion had effects on a wide range of other behavioral measures, including several measures of anxiety. Our findings demonstrate that the heterozygous loss of α-neurexin I and α-neurexin II in mice leads to phenotypes relevant to autism and schizophrenia.


Subject(s)
Discrimination, Psychological/physiology , Learning/physiology , Memory/physiology , Nerve Tissue Proteins/deficiency , Neural Cell Adhesion Molecules/deficiency , Social Behavior , Animals , Anxiety/metabolism , Autistic Disorder , Calcium-Binding Proteins , Cognition/physiology , Female , Male , Mice, Inbred C57BL , Mice, Knockout , Motor Activity/physiology , Nerve Tissue Proteins/genetics , Neural Cell Adhesion Molecules/genetics , Phenotype , Schizophrenic Psychology , Sequence Deletion
14.
Neuron ; 82(1): 1-3, 2014 Apr 02.
Article in English | MEDLINE | ID: mdl-24698262

ABSTRACT

In this issue of Neuron,Bjerknes et al. (2014) show that cells responding to environmental boundaries (border/boundary cells) are present as soon as rat pups can independently explore their environment. These boundary-based representations may thus provide a scaffold for other, later emerging, spatial representations.


Subject(s)
Aging/physiology , Brain Mapping , Entorhinal Cortex/cytology , Hippocampus/cytology , Neurons/physiology , Spatial Behavior/physiology , Animals , Female , Male
15.
Biol Mood Anxiety Disord ; 4(1): 4, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24607258

ABSTRACT

BACKGROUND: Animal studies have suggested that the hippocampus may play an important role in anxiety as part of the Behavioural Inhibition System (BIS), which mediates reactivity to threat and punishment and can predict an individual's response to anxiety-relevant cues in a given environment. The aim of the present structural magnetic resonance imaging (MRI) study was to examine the relationship between individual differences in BIS and hippocampal structure, since this has not received sufficient attention in non-clinical populations. Thirty healthy right-handed participants with no history of alcohol or drug abuse, neurological or psychiatric disorders, or traumatic brain injury were recruited (16 male, 14 female, age 18 to 32 years). T1-weighted structural MRI scans were used to derive estimates of total intracranial volume, and hippocampal and amygdala gray matter volume using FreeSurfer. To relate brain structure to Gray's BIS, participants completed the Sensitivity to Punishment questionnaire. They also completed questionnaires assessing other measures potentially associated with hippocampal volume (Beck Depression Inventory, Negative Life Experience Survey), and two other measures of anxiety (Spielberger Trait Anxiety Inventory and the Beck Anxiety Inventory). RESULTS: We found that high scores on the Sensitivity to Punishment scale were positively associated with hippocampal volume, and that this phenomenon was lateralized to the right side. In other words, greater levels of behavioural inhibition (BIS) were positively associated with right hippocampal volume. CONCLUSIONS: Our data suggest that hippocampal volume is related to the cognitive and affective dimensions of anxiety indexed by the Sensitivity to Punishment, and support the idea that morphological differences in the hippocampal formation may be associated with behavioural inhibition contributions to anxiety.

16.
Network ; 25(1-2): 20-37, 2014.
Article in English | MEDLINE | ID: mdl-24571096

ABSTRACT

The spirit of systems pharmacology was adopted to study the possible mechanisms of anxiolytic drugs on hippocampal electric patterns. The frequency of the hippocampal theta rhythm increases linearly with the intensity of electrical stimulation to the brainstem. The reduction of mean theta frequency in this paradigm predicts the clinical efficacy of anxiolytic drugs. The purpose of this study was to investigate the mechanisms by which anxiolytics produce their characteristic effects on the slope and intercept of the stimulus-frequency relationship of hippocampal theta. A network of neuron populations that generates septo-hippocampal theta rhythm was modeled using a compartmental modeling technique. The influence of cellular and synaptic parameters on network frequency was studied. Results show that halving the rate of rise and fall of pyramidal hyperpolarization-activated (Ih) conductance lowers nPO elicited theta frequency at low levels of stimulation. Results also suggest that increasing the decay time constant of inhibitory post-synaptic current can reduce the frequency of low nPO stimulation elicited theta rhythm, while maximal synaptic conductance of GABA-mediated synapses has little effect on frequency. Given their similar effect on network dynamics as by known anxiolytics, these parameter manipulations may mimic or predict the biophysical manifestations of anxiolytic action within the septo-hippocampal system.


Subject(s)
Anti-Anxiety Agents/pharmacology , Hippocampus/drug effects , Models, Neurological , Neural Networks, Computer , Theta Rhythm/drug effects , Hippocampus/physiology , Theta Rhythm/physiology
17.
Philos Trans R Soc Lond B Biol Sci ; 369(1635): 20120510, 2014 Feb 05.
Article in English | MEDLINE | ID: mdl-24366125

ABSTRACT

Over the past four decades, research has revealed that cells in the hippocampal formation provide an exquisitely detailed representation of an animal's current location and heading. These findings have provided the foundations for a growing understanding of the mechanisms of spatial cognition in mammals, including humans. We describe the key properties of the major categories of spatial cells: place cells, head direction cells, grid cells and boundary cells, each of which has a characteristic firing pattern that encodes spatial parameters relating to the animal's current position and orientation. These properties also include the theta oscillation, which appears to play a functional role in the representation and processing of spatial information. Reviewing recent work, we identify some themes of current research and introduce approaches to computational modelling that have helped to bridge the different levels of description at which these mechanisms have been investigated. These range from the level of molecular biology and genetics to the behaviour and brain activity of entire organisms. We argue that the neuroscience of spatial cognition is emerging as an exceptionally integrative field which provides an ideal test-bed for theories linking neural coding, learning, memory and cognition.


Subject(s)
Action Potentials/physiology , Cognition/physiology , Hippocampus/physiology , Models, Neurological , Neurons/physiology , Space Perception/physiology , Animals , Computer Simulation , Hippocampus/anatomy & histology , Hippocampus/cytology , Humans , Mice , Rats , Theta Rhythm/physiology
18.
Philos Trans R Soc Lond B Biol Sci ; 369(1635): 20120514, 2014 Feb 05.
Article in English | MEDLINE | ID: mdl-24366128

ABSTRACT

The spatial mapping function of the hippocampal formation is likely derived from two sets of information: one based on the external environment and the other based on self-motion. Here, we further characterize 'boundary vector cells' (BVCs) in the rat subiculum, which code space relative to one type of cue in the external environment: boundaries. We find that the majority of cells with fields near the perimeter of a walled environment exhibit an additional firing field when an upright barrier is inserted into the walled environment in a manner predicted by the BVC model. We use this property of field repetition as a heuristic measure to define BVCs, and characterize their spatial and temporal properties. In further tests, we find that subicular BVCs typically treat drop edges similarly to walls, including exhibiting field repetition when additional drop-type boundaries are added to the testing environment. In other words, BVCs treat both kinds of edge as environmental boundaries, despite their dissimilar sensory properties. Finally, we also report the existence of 'boundary-off cells', a new class of boundary-coding cells. These cells fire everywhere except where a given BVC might fire.


Subject(s)
Cues , Evoked Potentials/physiology , Hippocampus/physiology , Models, Neurological , Neurons/physiology , Space Perception/physiology , Animals , Computer Simulation , Electrophysiology/methods , Hippocampus/cytology , Male , Monte Carlo Method , Rats
19.
Philos Trans R Soc Lond B Biol Sci ; 369(1635): 20130188, 2014 Feb 05.
Article in English | MEDLINE | ID: mdl-24366142

ABSTRACT

The mammalian hippocampal formation provides neuronal representations of environmental location but the underlying mechanisms are unclear. The majority of cells in medial entorhinal cortex and parasubiculum show spatially periodic firing patterns. Grid cells exhibit hexagonal symmetry and form an important subset of this more general class. Occasional changes between hexagonal and non-hexagonal firing patterns imply a common underlying mechanism. Importantly, the symmetrical properties are strongly affected by the geometry of the environment. Here, we introduce a field-boundary interaction model where we demonstrate that the grid cell pattern can be formed from competing place-like and boundary inputs. We show that the modelling results can accurately capture our current experimental observations.


Subject(s)
Action Potentials/physiology , Entorhinal Cortex/physiology , Hippocampus/physiology , Models, Neurological , Neurons/physiology , Space Perception/physiology , Animals , Computer Simulation , Entorhinal Cortex/cytology , Hippocampus/cytology , Male , Neurons/cytology , Rats
20.
J Neurosci ; 33(20): 8650-67, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23678110

ABSTRACT

Hippocampal processing is strongly implicated in both spatial cognition and anxiety and is temporally organized by the theta rhythm. However, there has been little attempt to understand how each type of processing relates to the other in behaving animals, despite their common substrate. In freely moving rats, there is a broadly linear relationship between hippocampal theta frequency and running speed over the normal range of speeds used during foraging. A recent model predicts that spatial-translation-related and arousal/anxiety-related mechanisms of hippocampal theta generation underlie dissociable aspects of the theta frequency-running speed relationship (the slope and intercept, respectively). Here we provide the first confirmatory evidence: environmental novelty decreases slope, whereas anxiolytic drugs reduce intercept. Variation in slope predicted changes in spatial representation by CA1 place cells and novelty-responsive behavior. Variation in intercept predicted anxiety-like behavior. Our findings isolate and doubly dissociate two components of theta generation that operate in parallel in behaving animals and link them to anxiolytic drug action, novelty, and the metric for self-motion.


Subject(s)
Anti-Anxiety Agents/pharmacology , Exploratory Behavior/physiology , Hippocampus/drug effects , Theta Rhythm/physiology , Wakefulness/physiology , Analysis of Variance , Animals , Anxiety/drug therapy , Anxiety/etiology , Body Temperature/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Electroencephalography , Evoked Potentials/drug effects , Exploratory Behavior/drug effects , Hippocampus/physiology , Male , Rats , Space Perception/drug effects , Space Perception/physiology , Theta Rhythm/drug effects , Time Factors , Wakefulness/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...