Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Emerg Microbes Infect ; 13(1): 2327385, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38514916

ABSTRACT

Several cellular factors have been reported to be required for replication of classical swine fever virus (CSFV), a member of the genus Pestivirus within the family Flaviviridae. However, many steps of its replication cycle are still poorly understood. The low-density lipoprotein receptor (LDLR) is involved in cell entry and post-entry processes of different viruses including other members of the Flaviviridae. In this study, the relevance of LDLR in replication of CSFV and another porcine pestivirus, Bungowannah pestivirus (BuPV), was investigated by antibody-mediated blocking of LDLR and genetically engineered porcine cell lines providing altered LDLR expression levels. An LDLR-specific antibody largely blocked infection with CSFV, but had only a minor impact on BuPV. Infections of the genetically modified cells confirmed an LDLR-dependent replication of CSFV. Compared to wild type cells, lower and higher expression of LDLR resulted in a 3.5-fold decrease or increase in viral titers already 20 h post infection. Viral titers were 25-fold increased in LDLR-overexpressing cells compared to cells with reduced LDLR expression at 72 h post infection. The varying LDLR expression levels had no clear effect on permissivity to BuPV. A decoy receptor assay using recombinant soluble LDLR provided no evidence that LDLR may function as a receptor for CSFV or BuPV. Differences in their dependency on LDLR suggest that CSFV and BuPV likely use different mechanisms to interact with their host cells. Moreover, this study reveals similarities in the replication cycles of CSFV and other members of the family Flaviviridae that are dependent on LDLR.


Subject(s)
Classical Swine Fever Virus , Pestivirus , Swine , Animals , Classical Swine Fever Virus/genetics , Pestivirus/physiology , Cell Line , Lipoproteins, LDL/metabolism , Virus Replication
2.
Transbound Emerg Dis ; 69(4): 2349-2360, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34331830

ABSTRACT

The recently identified causative agent of congenital tremor in domestic piglets, atypical porcine pestivirus (APPV), was detected in serum from Swedish wild boar. A previous study from Sweden described APPV in domestic piglets suffering from congenital tremor, but the APPV situation in the wild boar population was unknown. In this study, 595 serum samples from wild boar originating from 13 counties in the south and central parts of Sweden, collected between 2000 and 2018, were analysed for the presence of the APPV-genome and for antibodies against the APPV-glycoprotein Erns . The results revealed that APPV is highly abundant in the Swedish wild boar population; 12% (73/595) were APPV-genome positive in serum and 72% (433/595) of the tested wild boars displayed APPV-specific antibodies. The present study also shows that APPV has been present in the Swedish wild boar population since at least the year 2000. The viral sequences obtained from the wild boars were highly similar to those obtained from Swedish domestic pigs positive for APPV and suffering from congenital tremor, suggesting a viral exchange between wild boars and domestic pigs. The high proportion of viraemic and seropositive wild boar is indicative of wild boar being an important reservoir for APPV.


Subject(s)
Pestivirus Infections , Pestivirus , Swine Diseases , Animals , Pestivirus/genetics , Pestivirus Infections/congenital , Pestivirus Infections/epidemiology , Pestivirus Infections/veterinary , Phylogeny , Sus scrofa , Sweden/epidemiology , Swine , Tremor/congenital , Tremor/epidemiology , Tremor/veterinary
3.
Emerg Microbes Infect ; 11(1): 60-72, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34839792

ABSTRACT

The genus Pestivirus within the family Flaviviridae comprises highly relevant animal pathogens such as bovine viral diarrhoea virus 1 and 2 (BVDV-1 and -2) classified into the two species Pestivirus A and Pestivirus B, respectively. First described in 2004, HoBi-like pestiviruses (HoBiPeV) represent emerging bovine pathogens that belong to a separate species (Pestivirus H), but share many similarities with BVDV-1 and -2. Additionally, two giraffe pestivirus (GPeV) strains both originating from Kenya represent another distinct species (Pestivirus G), whose members replicate very efficiently in bovine cells. In this study, we investigated the role of bovine complement regulatory protein 46 (CD46bov), the receptor of BVDV-1 and -2, in the entry of HoBiPeV and GPeV. For this purpose, bovine CD46-knockout and CD46-rescue cell lines were generated by CRISPR/Cas9 technology and subsequent trans-complementation, respectively. Our results provide strong evidence that the impact of CD46bov differs between viruses belonging to Pestivirus H and viruses representing Pestivirus G: CD46bov revealed to be a major cellular entry factor for HoBiPeV strain HaVi-20. In contrast, GPeV strain PG-2 presented as largely independent of CD46bov, suggesting a different entry mechanism involving other molecular determinants which remain to be identified. In addition, we demonstrated that, similar to BVDV-1 and -2, virus isolates of both Pestivirus H and Pestivirus G are able to adapt to cell culture conditions by using heparan sulfate to enter the host cell. In conclusion, our findings show that different bovine pestiviruses use diverse mechanisms of host cell entry.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease/metabolism , Diarrhea Viruses, Bovine Viral/physiology , Membrane Cofactor Protein/metabolism , Receptors, Virus/metabolism , Animals , Bovine Virus Diarrhea-Mucosal Disease/genetics , Bovine Virus Diarrhea-Mucosal Disease/virology , Cattle , Cell Line , Diarrhea Viruses, Bovine Viral/classification , Diarrhea Viruses, Bovine Viral/genetics , Membrane Cofactor Protein/genetics , Receptors, Virus/genetics , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL
...