Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 95(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38940645

ABSTRACT

Noise is a consistent problem for x-ray transmission images of High-Energy-Density (HED) experiments because it can significantly affect the accuracy of inferring quantitative physical properties from these images. We consider experiments that use x-ray area backlighting to image a thin layer of opaque material within a physics package to observe its hydrodynamic evolution. The spatial variance of the x-ray transmission across the system due to changing opacity serves as an analog for measuring density in this evolving layer. The noise in these images adds nonphysical variations in measured intensity, which can significantly reduce the accuracy of our inferred densities, particularly at small spatial scales. Denoising these images is thus necessary to improve our quantitative analysis, but any denoising method also affects the underlying information in the image. In this paper, we present a method for denoising HED x-ray images via a deep convolutional neural network model with a modified DenseNet architecture. In our denoising framework, we estimate the noise present in the real (data) images of interest and apply the inferred noise distribution to a set of natural images. These synthetic noisy images are then used to train a neural network model to recognize and remove noise of that character. We show that our trained denoiser network significantly reduces the noise in our experimental images while retaining important physical features.

2.
Rev Sci Instrum ; 94(5)2023 May 01.
Article in English | MEDLINE | ID: mdl-37133345

ABSTRACT

Implosion symmetry is a key requirement in achieving a robust burning plasma in inertial confinement fusion experiments. In double-shell capsule implosions, we are interested in the shape of the inner shell as it pushes on the fuel. Shape analysis is a popular technique for studying said symmetry during implosion. Combinations of filtering and contour-finding algorithms are studied for their promise in reliably recovering Legendre shape coefficients from synthetic radiographs of double-shell capsules with applied levels of noise. A radial lineout max(slope) method when used on an image pre-filtered with non-local means and a variant of the marching squares algorithm are able to recover p0, p2, and p4 maxslope Legendre shape coefficients with mean pixel discrepancy errors of 2.81 and 3.06, respectively, for the noisy synthetic radiographs we consider. This improves upon prior radial lineout methods paired with Gaussian filtering, which we show to be unreliable and whose performance is dependent on input parameters that are difficult to estimate.

3.
Rev Sci Instrum ; 92(9): 093505, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34598501

ABSTRACT

Proton imaging is a powerful technique for imaging electromagnetic fields within an experimental volume, in which spatial variations in proton fluence are a result of deflections to proton trajectories due to interaction with the fields. When deflections are large, proton trajectories can overlap, and this nonlinearity creates regions of greatly increased proton fluence on the image, known as caustics. The formation of caustics has been a persistent barrier to reconstructing the underlying fields from proton images. We have developed a new method for reconstructing the path-integrated magnetic fields, which begins to address the problem posed by caustics. Our method uses multiple proton images of the same object, each image at a different energy, to fill in the information gaps and provide some uniqueness when reconstructing caustic features. We use a differential evolution algorithm to iteratively estimate the underlying deflection function, which accurately reproduces the observed proton fluence at multiple proton energies simultaneously. We test this reconstruction method using synthetic proton images generated for three different, cylindrically symmetric field geometries at various field amplitudes and levels of proton statistics and present reconstruction results from a set of experimental images. The method we propose requires no assumption of deflection linearity and can reliably solve for fields underlying linear, nonlinear, and caustic proton image features for the selected geometries and is shown to be fairly robust to noise in the input proton intensity.

SELECTION OF CITATIONS
SEARCH DETAIL
...