Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Glia ; 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38852127

ABSTRACT

Astrocytes that reside in superficial (SL) and deep cortical layers have distinct molecular profiles and morphologies, which may underlie specific functions. Here, we demonstrate that the production of SL and deep layer (DL) astrocyte populations from neural progenitor cells in the mouse is temporally regulated. Lineage tracking following in utero and postnatal electroporation with PiggyBac (PB) EGFP and birth dating with EdU and FlashTag, showed that apical progenitors produce astrocytes during late embryogenesis (E16.5) that are biased to the SL, while postnatally labeled (P0) astrocytes are biased to the DL. In contrast, astrocytes born during the predominantly neurogenic window (E14.5) showed a random distribution in the SL and DL. Of interest, E13.5 astrocytes birth dated at E13.5 with EdU showed a lower layer bias, while FT labeling of apical progenitors showed no bias. Finally, examination of the morphologies of "biased" E16.5- and P0-labeled astrocytes demonstrated that E16.5-labeled astrocytes exhibit different morphologies in different layers, while P0-labeled astrocytes do not. Differences based on time of birth are also observed in the molecular profiles of E16.5 versus P0-labeled astrocytes. Altogether, these results suggest that the morphological, molecular, and positional diversity of cortical astrocytes is related to their time of birth from ventricular/subventricular zone progenitors.

2.
Neurophotonics ; 10(4): 044406, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37766924

ABSTRACT

Despite decades of research on the noradrenergic system, our understanding of its impact on brain function and behavior remains incomplete. Traditional recording techniques are challenging to implement for investigating in vivo noradrenergic activity, due to the relatively small size and the position in the brain of the locus coeruleus (LC), the primary location for noradrenergic neurons. However, recent advances in optical and fluorescent methods have enabled researchers to study the LC more effectively. Use of genetically encoded calcium indicators to image the activity of noradrenergic neurons and biosensors that monitor noradrenaline release with fluorescence can be an indispensable tool for studying noradrenergic activity. In this review, we examine how these methods are being applied to record the noradrenergic system in the rodent brain during behavior.

3.
Transl Neurodegener ; 12(1): 36, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37468944

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor and non-motor symptoms. More than 200 years after its first clinical description, PD remains a serious affliction that affects a growing proportion of the population. Prevailing treatments only alleviate symptoms; there is still neither a cure that targets the neurodegenerative processes nor therapies that modify the course of the disease. Over the past decades, several animal models have been developed to study PD. Although no model precisely recapitulates the pathology, they still provide valuable information that contributes to our understanding of the disease and the limitations of our treatment options. This review comprehensively summarizes the different animal models available for Parkinson's research, with a focus on those induced by drugs, neurotoxins, pesticides, genetic alterations, α-synuclein inoculation, and viral vector injections. We highlight their characteristics and ability to reproduce PD-like phenotypes. It is essential to realize that the strengths and weaknesses of each model and the induction technique at our disposal are determined by the research question being asked. Our review, therefore, seeks to better aid researchers by ensuring a concrete discernment of classical and novel animal models in PD research.


Subject(s)
Parkinson Disease , Animals , Parkinson Disease/genetics , Parkinson Disease/therapy , Parkinson Disease/pathology , Disease Models, Animal , Neurotoxins , Mutation
4.
Neurophotonics ; 10(3): 035002, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37362387

ABSTRACT

Significance: Typical light sheet microscopes suffer from artifacts related to the geometry of the light sheet. One main inconvenience is the non-uniform thickness of the light sheet obtained with a Gaussian laser beam. Aim: We developed a two-photon light sheet microscope that takes advantage of a thin and long Bessel-Gauss beam illumination to increase the sheet extent without compromising the resolution. Approach: We use an axicon lens placed directly at the output of an amplified femtosecond laser to produce a long Bessel-Gauss beam on the sample. We studied the dopaminergic system and its projections in a whole cleared mouse brain. Results: Our light sheet microscope allows an isotropic resolution of 2.4 µm in all three axes of the scanned volume while keeping a millimetric-sized field of view, and a fast acquisition rate of up to 34 mm2/s. With slight modifications to the optical setup, the sheet extent can be increased to 6 mm. Conclusion: The proposed system's sheet extent and resolution surpass currently available systems, enabling the fast imaging of large specimens.

5.
NPJ Parkinsons Dis ; 9(1): 44, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36973269

ABSTRACT

In Parkinson's disease (PD) misfolded alpha-synuclein (aSyn) accumulates in the substantia nigra, where dopaminergic neurons are progressively lost. The mechanisms underlying aSyn pathology are still unclear, but they are hypothesized to involve the autophagy-lysosome pathway (ALP). LRRK2 mutations are a major cause of familial and sporadic PD, and LRRK2 kinase activity has been shown to be involved in pS129-aSyn inclusion modulation. We observed selective downregulation of the novel PD risk factor RIT2 in vitro and in vivo. Rit2 overexpression in G2019S-LRRK2 cells rescued ALP abnormalities and diminished aSyn inclusions. In vivo, viral mediated overexpression of Rit2 operated neuroprotection against AAV-A53T-aSyn. Furthermore, Rit2 overexpression prevented the A53T-aSyn-dependent increase of LRRK2 kinase activity in vivo. On the other hand, reduction of Rit2 levels leads to defects in the ALP, similar to those induced by the G2019S-LRRK2 mutation. Our data indicate that Rit2 is required for correct lysosome function, inhibits overactive LRRK2 to ameliorate ALP impairment, and counteracts aSyn aggregation and related deficits. Targeting Rit2 could represent an effective strategy to combat neuropathology in familial and idiopathic PD.

6.
Comput Biol Med ; 155: 106376, 2023 03.
Article in English | MEDLINE | ID: mdl-36796183

ABSTRACT

BACKGROUND: Additive manufacturing enables to print patient-specific Foot Orthotics (FOs). In FOs featuring lattice structures, the variation of the cell's dimensions provides a locally variable stiffness to meet the therapeutic needs of each patient. In an optimization problem, however, using explicit Finite Element (FE) simulation of lattice FOs with converged 3D elements is computationally prohibitive. This paper presents a framework to efficiently optimize the cell's dimensions of a honeycomb lattice FO for flat foot condition. METHODS: We built a surrogate based on shell elements whose mechanical properties were computed by the numerical homogenization technique. The model was submitted to a static pressure distribution of a flat foot and it predicted the displacement field for a given set of geometrical parameters of the honeycomb FO. This FE simulation was considered as a black-box and a derivative-free optimization solver was employed. The cost function was defined based on the difference between the predicted displacement by the model against a therapeutic target displacement. RESULTS: Using the homogenized model as a surrogate significantly accelerated the stiffness optimization of the lattice FO. The homogenized model could predict the displacement field 78 times faster than the explicit model. When 2000 evaluations were required in an optimization problem, the computational time was reduced from 34 days to 10 hours using the homogenized model rather than explicit model. Moreover, in the homogenized model, there was no need to re-create and re-mesh the insole's geometry in each iteration of the optimization. It was only required to update the effective properties. CONCLUSION: The presented homogenized model can be used as a surrogate within an optimization framework to customize cell's dimensions of honeycomb lattice FO in a computationally efficient manner.


Subject(s)
Flatfoot , Medicine , Humans , Foot , Computer Simulation , Algorithms , Finite Element Analysis
7.
Comput Biol Med ; 146: 105532, 2022 07.
Article in English | MEDLINE | ID: mdl-35751191

ABSTRACT

BACKGROUND: Foot orthotics (FOs) are frequently prescribed to provide comfortable walking for patients. Finite element (FE) simulation and 3D printing pave the way to analyse, optimize and fabricate functionally graded lattice FOs where the local stiffness can vary to meet the therapeutic needs of each individual patient. Explicit FE modelling of lattice FOs with converged 3D solid elements is computationally prohibitive. This paper presents a more computationally efficient FE model of cellular FOs. METHOD: The presented FE model features shell elements whose mechanical properties were computed from the numerical homogenization technique. To verify the results, the predictions of the homogenized models were compared to the explicit model's predictions when the FO was under a static pressure distribution of a foot. To validate the results, the predictions were also compared with experimental measurements when the FO was under a vertical displacement at the medial longitudinal arch. RESULTS: The verification procedure showed that the homogenized model was 46 times faster than the explicit model, while their relative difference was less than 8% to predict the local minimum of out-of-plane displacement. The validation procedure showed that both models predicted the same contact force with a relative difference of less than 1%. The predicted force-displacement curves were also within a 90% confidence interval of the experimental measurements having a relative difference smaller than 10%. In this case, using the homogenized model reduced the computational time from 22 h to 22 min. CONCLUSION: The presented homogenized model can be therefore employed to speed up the FE simulation to predict the deformations of the cellular FOs.


Subject(s)
Foot , Walking , Biomechanical Phenomena , Computer Simulation , Finite Element Analysis , Humans
8.
Am J Infect Control ; 50(12): 1281-1295, 2022 12.
Article in English | MEDLINE | ID: mdl-35525498

ABSTRACT

Fifty years of evolution in infection prevention and control programs have involved significant accomplishments related to clinical practices, methodologies, and technology. However, regulatory mandates, and resource and research limitations, coupled with emerging infection threats such as the COVID-19 pandemic, present considerable challenges for infection preventionists. This article provides guidance and recommendations in 14 key areas. These interventions should be considered for implementation by United States health care facilities in the near future.


Subject(s)
COVID-19 , Cross Infection , Humans , United States , Cross Infection/prevention & control , Cross Infection/epidemiology , Pandemics/prevention & control , COVID-19/prevention & control , Health Facilities , Infection Control/methods
9.
PLoS Biol ; 20(3): e3001578, 2022 03.
Article in English | MEDLINE | ID: mdl-35263320

ABSTRACT

Neurodegenerative disorders refer to a group of diseases commonly associated with abnormal protein accumulation and aggregation in the central nervous system. However, the exact role of protein aggregation in the pathophysiology of these disorders remains unclear. This gap in knowledge is due to the lack of experimental models that allow for the spatiotemporal control of protein aggregation, and the investigation of early dynamic events associated with inclusion formation. Here, we report on the development of a light-inducible protein aggregation (LIPA) system that enables spatiotemporal control of α-synuclein (α-syn) aggregation into insoluble deposits called Lewy bodies (LBs), the pathological hallmark of Parkinson disease (PD) and other proteinopathies. We demonstrate that LIPA-α-syn inclusions mimic key biochemical, biophysical, and ultrastructural features of authentic LBs observed in PD-diseased brains. In vivo, LIPA-α-syn aggregates compromise nigrostriatal transmission, induce neurodegeneration and PD-like motor impairments. Collectively, our findings provide a new tool for the generation, visualization, and dissection of the role of α-syn aggregation in PD.


Subject(s)
Parkinson Disease , alpha-Synuclein , Cluster Analysis , Humans , Lewy Bodies/metabolism , Lewy Bodies/pathology , Parkinson Disease/metabolism , Protein Aggregates , alpha-Synuclein/metabolism
10.
Mol Neurobiol ; 58(7): 3405-3416, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33713017

ABSTRACT

Parkinson's disease is a neurodegenerative disorder characterised by nigrostriatal dopaminergic degeneration, and intracellular α-synuclein aggregation. Current pharmacological treatments are solely symptomatic so there is a need to identify agents that can slow or stop dopaminergic degeneration. One proposed class of therapeutics are neurotrophic factors which promote the survival of nigrostriatal dopaminergic neurons. However, neurotrophic factors need to be delivered directly to the brain. An alternative approach may be to identify pharmacological agents which can reach the brain to stimulate neurotrophic factor expression and/or their signalling pathways in dopaminergic neurons. BMP2 is a neurotrophic factor that is expressed in the human substantia nigra; exogenous BMP2 administration protects against dopaminergic degeneration in in vitro models of PD. In this study, we investigated the neurotrophic potential of two FDA-approved drugs, quinacrine and niclosamide, that are modulators of BMP2 signalling. We report that quinacrine and niclosamide, like BMP2, significantly increased neurite length, as a readout of neurotrophic action, in SH-SY5Y cells and dopaminergic neurons in primary cultures of rat ventral mesencephalon. We also show that these effects of quinacrine and niclosamide require the activation of BMP-Smad signalling. Finally, we demonstrate that quinacrine and niclosamide are neuroprotective against degeneration induced by the neurotoxins, MPP+ and 6-OHDA, and by viral-mediated overexpression of α-synuclein in vitro. Collectively, this study identifies two drugs, that are safe for use in patients' to 'are approved for human use, that exert neurotrophic effects on dopaminergic neurons through modulation of BMP-Smad signalling. This rationalises the further study of drugs that target the BMP-Smad pathway as potential neuroprotective pharmacotherapy for Parkinson's disease.


Subject(s)
Dopaminergic Neurons/drug effects , Neurites/drug effects , Neuroprotection/drug effects , Niclosamide/pharmacology , Quinacrine/pharmacology , alpha-Synuclein/toxicity , Animals , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Proteins/metabolism , Cell Line, Tumor , Cells, Cultured , Dopaminergic Neurons/metabolism , Dose-Response Relationship, Drug , Humans , Mesencephalon/drug effects , Mesencephalon/metabolism , Nerve Degeneration/chemically induced , Nerve Degeneration/metabolism , Nerve Degeneration/prevention & control , Neurites/metabolism , Neuroprotection/physiology , Neurotoxins/toxicity , Niclosamide/therapeutic use , Quinacrine/therapeutic use , Rats , Smad Proteins/metabolism
11.
Nutr Neurosci ; 24(3): 197-211, 2021 Mar.
Article in English | MEDLINE | ID: mdl-31131731

ABSTRACT

Parkinson's disease is a neurodegenerative disorder characterized by the progressive loss of midbrain dopaminergic (mDA) neurons in the substantia nigra pars compacta, and it involves oxidative stress. Our goal was to evaluate the neuroprotective effect of Vitis vinifera red grape seed and skin extract (GSSE) in a model of Parkinson's disease. GSSE is very rich in phenolic compounds, such as flavonoids, anthocyanins, catechins and stilbenes, which are present in the pulp, seeds, and leaves of the fruit. GSSE is known for its antioxidant properties and has shown beneficial effects against oxidative injury in different organs, such as the kidneys, liver, heart and brain. In this study, we revealed the neuroprotective effect of GSSE on midbrain dopaminergic neurons both in vitro and in vivo. We used the neurotoxin 6-hydroxydopamine (6-OHDA), which induces oxidative damage and mimics the degeneration of dopaminergic neurons observed in Parkinson's disease. We found that GSSE was effective in protecting dopamine neurons from 6-OHDA toxicity by reducing apoptosis, the level of reactive oxygen species (ROS) and inflammation. Furthermore, we found that GSSE treatment efficiently protected against neuronal loss and improved motor function in an in vivo 6-OHDA model of Parkinson's disease (PD). Altogether, our results show that GSSE acts at multiple levels to protect dopamine neurons from degeneration in a model of PD.


Subject(s)
Grape Seed Extract/administration & dosage , Neuroprotective Agents/administration & dosage , Parkinson Disease/metabolism , Parkinson Disease/pathology , Vitis , Animals , Apoptosis/drug effects , Disease Models, Animal , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/pathology , Male , Mice , Oxidative Stress/drug effects
13.
J Parkinsons Dis ; 11(1): 71-92, 2021.
Article in English | MEDLINE | ID: mdl-33104039

ABSTRACT

Parkinson's disease is a neurodegenerative disorder mainly characterized by the degeneration of dopaminergic neurons in the substantia nigra. Degenerating neurons contain abnormal aggregates called Lewy bodies, that are predominantly composed of the misfolded and/or mutated alpha-synuclein protein. Post-translational modifications, cellular stress, inflammation and gene mutations are thought to trigger its pathological misfolding and aggregation. With alpha-synuclein pathology being strongly associated with dopaminergic neuronal toxicity, strategies aimed to reduce its burden are expected to be beneficial in slowing disease progression. Moreover, multiple sources of evidence suggest a cell-to-cell transmission of pathological alpha-synuclein in a prion-like manner. Therefore, antibodies targeting extra- or intracellular alpha-synuclein could be efficient in limiting the aggregation and transmission. Several active and passive immunization strategies have been explored to target alpha-synuclein. Here, we summarize immunotherapeutic approaches that were tested in pre-clinical or clinical studies in the last two decades in an attempt to treat Parkinson's disease.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Immunization, Passive , Parkinson Disease , Single-Domain Antibodies/therapeutic use , Vaccination , alpha-Synuclein , Animals , Humans , Parkinson Disease/metabolism , Parkinson Disease/therapy , alpha-Synuclein/immunology , alpha-Synuclein/metabolism
14.
Front Neurosci ; 14: 578993, 2020.
Article in English | MEDLINE | ID: mdl-33122994

ABSTRACT

Alpha-Synuclein (α-Syn) is a central protein in the pathogenesis of synucleinopathies, a group of neurodegenerative disorders including Parkinson's disease (PD). Although its role in neurotransmission is well established, the precise role of this protein in disease pathogenesis is still not fully understood. It is, however, widely regarded to be associated with the misfolding and accumulation of toxic intracellular aggregates. In fact, α-Syn is the most abundant protein component of Lewy bodies and Lewy neurites, which are also characterized by a high lipid content. Lipids, the main constituents of cellular membranes, have been implicated in many aspects of PD-related processes. α-Syn interacts with membrane phospholipids and free fatty acids via its N-terminal domain, and altered lipid-protein complexes might enhance both its binding to synaptic and mitochondrial membranes and its oligomerization. Several studies have highlighted a specific interaction of α-Syn with the phospholipid cardiolipin (CL), a major constituent of mitochondrial membranes. By interacting with CL, α-Syn is able to disrupt mitochondrial membrane integrity, leading to mitochondrial dysfunction. Additionally, externalized CL is able to facilitate the refolding of toxic α-Syn species at the outer mitochondrial membrane. In this review, we discuss how α-Syn/lipid interactions, in particular the α-Syn/CL interaction at the mitochondrial membrane, may affect α-Syn aggregation and mitochondrial dysfunction and may thus represent an important mechanism in the pathogenesis of PD.

15.
Neuron ; 107(4): 595-596, 2020 08 19.
Article in English | MEDLINE | ID: mdl-32818472

ABSTRACT

In this issue, Brignani, Raj, et al. show that Netrin-1 from distinct sources controls neuronal migrations into the substantia nigra. Remarkably, one source of Netrin -1 is forebrain axons traversing the midbrain, and this is required for proper GABAergic neuronal migration into the substantia nigra pars reticulata.


Subject(s)
GABAergic Neurons , Substantia Nigra , Axons , Dopamine , Netrin-1
16.
Front Cell Dev Biol ; 8: 443, 2020.
Article in English | MEDLINE | ID: mdl-32626706

ABSTRACT

Mesencephalic dopaminergic (mDA) neurons derived from pluripotent stem cells (PSCs) have proven to be pivotal for disease modeling studies and as a source of transplantable tissue for regenerative therapies in Parkinson's disease (PD). Current differentiation protocols can generate standardized and reproducible cell products of dopaminergic neurons that elicit the characteristic transcriptional profile of ventral midbrain. Nonetheless, dopamine neurons residing in the mesencephalon comprise distinct groups of cells within diffusely defined anatomical boundaries and with distinct functional, electrophysiological, and molecular properties. Here we review recent single cell sequencing studies that are shedding light on the neuronal heterogeneity within the mesencephalon and discuss how resolving the complex molecular profile of distinct sub-populations within this region could help refine patterning and quality control assessment of PSC-derived mDA neurons to subtype-specificity in vitro. In turn, such advances would have important impact in improving cell replacement therapy, disease mechanistic studies and drug screening in PD.

18.
Cell Rep ; 30(7): 2374-2386.e5, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32075770

ABSTRACT

The neurodevelopmental origin of hyperactivity disorder has been suggested to involve the dopaminergic system, but the underlying mechanisms are still unknown. Here, transcription factors Lmx1a and Lmx1b are shown to be essential for midbrain dopaminergic (mDA) neuron excitatory synaptic inputs and dendritic development. Strikingly, conditional knockout (cKO) of Lmx1a/b in postmitotic mDA neurons results in marked hyperactivity. In seeking Lmx1a/b target genes, we identify positively regulated Slitrk2 and negatively regulated Slitrk5. These two synaptic adhesion proteins promote excitatory and inhibitory synapses on mDA neurons, respectively. Knocking down Slitrk2 reproduces some of the Lmx1a/b cKO cellular and behavioral phenotypes, whereas Slitrk5 knockdown has opposite effects. The hyperactivity caused by this imbalance in excitatory/inhibitory synaptic inputs on dopamine neurons is reproduced by chronically inhibiting the ventral tegmental area during development using pharmacogenetics. Our study shows that alterations in developing dopaminergic circuits strongly impact locomotor activity, shedding light on mechanisms causing hyperactivity behaviors.


Subject(s)
Dopaminergic Neurons/metabolism , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Psychomotor Agitation/metabolism , Synapses/metabolism , Animals , Dopaminergic Neurons/pathology , Excitatory Postsynaptic Potentials , Female , Humans , Inhibitory Postsynaptic Potentials , LIM-Homeodomain Proteins/metabolism , Mice , Mice, Knockout , Pregnancy , Primary Cell Culture , Psychomotor Agitation/pathology , Synapses/pathology , Transcription Factors/metabolism , Transfection
19.
J Parkinsons Dis ; 10(1): 301-313, 2020.
Article in English | MEDLINE | ID: mdl-31868683

ABSTRACT

BACKGROUND: Genetic, biologic and clinical data suggest that Parkinson's disease (PD) is an umbrella for multiple disorders with clinical and pathological overlap, yet with different underlying mechanisms. To better understand these and to move towards neuroprotective treatment, we have established the Quebec Parkinson Network (QPN), an open-access patient registry, and data and bio-samples repository. OBJECTIVE: To present the QPN and to perform preliminary analysis of the QPN data. METHODS: A total of 1,070 consecutively recruited PD patients were included in the analysis. Demographic and clinical data were analyzed, including comparisons between males and females, PD patients with and without RBD, and stratified analyses comparing early and late-onset PD and different age groups. RESULTS: QPN patients exhibit a male:female ratio of 1.8:1, an average age-at-onset of 58.6 years, an age-at-diagnosis of 60.4 years, and average disease duration of 8.9 years. REM-sleep behavior disorder (RBD) was more common among men, and RBD was associated with other motor and non-motor symptoms including dyskinesia, fluctuations, postural hypotension and hallucinations. Older patients had significantly higher rates of constipation and cognitive impairment, and longer disease duration was associated with higher rates of dyskinesia, fluctuations, freezing of gait, falls, hallucinations and cognitive impairment. Since QPN's creation, over 60 studies and 30 publications have included patients and data from the QPN. CONCLUSIONS: The QPN cohort displays typical PD demographics and clinical features. These data are open-access upon application (http://rpq-qpn.ca/en/), and will soon include genetic, imaging and bio-samples. We encourage clinicians and researchers to perform studies using these resources.


Subject(s)
Biological Specimen Banks , Cognitive Dysfunction , Gait Disorders, Neurologic , Parkinson Disease , REM Sleep Behavior Disorder , Registries , Age of Onset , Aged , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Cohort Studies , Female , Gait Disorders, Neurologic/epidemiology , Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/physiopathology , Humans , Male , Middle Aged , Parkinson Disease/complications , Parkinson Disease/epidemiology , Parkinson Disease/physiopathology , Quebec/epidemiology , REM Sleep Behavior Disorder/epidemiology , REM Sleep Behavior Disorder/etiology , REM Sleep Behavior Disorder/physiopathology
20.
J Neurosci ; 38(3): 518-529, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29196321

ABSTRACT

Cell-surface molecules are dynamically regulated at the synapse to assemble and disassemble adhesive contacts that are important for synaptogenesis and for tuning synaptic transmission. Metalloproteinases dynamically regulate cellular behaviors through the processing of cell surface molecules. In the present study, we evaluated the role of membrane-type metalloproteinases (MT-MMPs) in excitatory synaptogenesis. We find that MT3-MMP and MT5-MMP are broadly expressed in the mouse cerebral cortex and that MT3-MMP loss-of-function interferes with excitatory synapse development in dissociated cortical neurons and in vivo We identify Nogo-66 receptor (NgR1) as an MT3-MMP substrate that is required for MT3-MMP-dependent synapse formation. Introduction of the shed ectodomain of NgR1 is sufficient to accelerate excitatory synapse formation in dissociated cortical neurons and in vivo Together, our findings support a role for MT3-MMP-dependent shedding of NgR1 in regulating excitatory synapse development.SIGNIFICANCE STATEMENT In this study, we identify MT3-MMP, a membrane-bound zinc protease, to be necessary for the development of excitatory synapses in cortical neurons. We identify Nogo-66 receptors (NgR1) as a downstream target of MT3-MMP proteolytic activity. Furthermore, processing of surface NgR1 by MT3-MMP generates a soluble ectodomain fragment that accelerates the formation of excitatory synapses. We propose that MT3-MMP activity and NgR1 shedding could stimulate circuitry remodeling in the adult brain and enhance functional connectivity after brain injury.


Subject(s)
Cerebral Cortex/metabolism , Matrix Metalloproteinase 16/metabolism , Neurons/metabolism , Nogo Receptor 1/metabolism , Synapses/metabolism , Animals , Metallothionein 3 , Mice , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...