Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Epidemiol ; 36(11): 1187-1194, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33993378

ABSTRACT

The 10 K is a large-scale prospective longitudinal cohort and biobank that was established in Israel. The primary aims of the study include development of prediction models for disease onset and progression and identification of novel molecular markers with a diagnostic, prognostic and therapeutic value. The recruitment was initiated in 2018 and is expected to complete in 2021. Between 28/01/2019 and 13/12/2020, 4,629 from the expected 10,000 participants were recruited (46 %). Follow-up visits are scheduled every year for a total of 25 years. The cohort includes individuals between the ages of 40 and 70 years. Predefined medical conditions were determined as exclusions. Information collected at baseline includes medical history, lifestyle and nutritional habits, vital signs, anthropometrics, blood tests results, Electrocardiography, Ankle-brachial pressure index (ABI), liver US and Dual-energy X-ray absorptiometry (DXA) tests. Molecular profiling includes transcriptome, proteome, gut and oral microbiome, metabolome and immune system profiling. Continuous measurements include glucose levels using a continuous glucose monitoring device for 2 weeks and sleep monitoring by a home sleep apnea test device for 3 nights. Blood and stool samples are collected and stored at - 80 °C in a storage facility for future research. Linkage is being established with national disease registries.


Subject(s)
Blood Glucose Self-Monitoring , Blood Glucose , Adult , Aged , Humans , Israel/epidemiology , Longitudinal Studies , Middle Aged , Prospective Studies
2.
EMBO J ; 40(6): e104683, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33620739

ABSTRACT

Regulatory switches are wide spread in many biological systems. Uniquely among them, the switch of the bacterial flagellar motor is not an on/off switch but rather controls the motor's direction of rotation in response to binding of the signaling protein CheY. Despite its extensive study, the molecular mechanism underlying this switch has remained largely unclear. Here, we resolved the functions of each of the three CheY-binding sites at the switch in E. coli, as well as their different dependencies on phosphorylation and acetylation of CheY. Based on this, we propose that CheY motor switching activity is potentiated upon binding to the first site. Binding of potentiated CheY to the second site produces unstable switching and at the same time enables CheY binding to the third site, an event that stabilizes the switched state. Thereby, this mechanism exemplifies a unique combination of tight motor regulation with inherent switching flexibility.


Subject(s)
Escherichia coli/physiology , Flagella/metabolism , Locomotion/physiology , Methyl-Accepting Chemotaxis Proteins/metabolism , Molecular Motor Proteins/metabolism , Bacterial Proteins , Escherichia coli Proteins , Protein Binding/physiology
3.
Sci Rep ; 10(1): 112, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31924821

ABSTRACT

Recently, various opsin types, known to be involved in vision, were demonstrated to be present in human and mouse sperm cells and to be involved there in thermosensing for thermotaxis. In vision, each opsin type is restricted to specific cells. The situation in this respect in sperm cells is not known. It is also not known whether or not both signaling pathways, found to function in sperm thermotaxis, are each activated by specific opsins, as in vision. Here we addressed these questions. Choosing rhodopsin and melanopsin as test cases and employing immunocytochemical analysis with antibodies against these opsins, we found that the majority of sperm cells were stained by both antibodies, indicating that most of the cells contained both opsins. By employing mutant mouse sperm cells that do not express melanopsin combined with specific signaling inhibitors, we furthermore demonstrated that rhodopsin and melanopsin each activates a different pathway. Thus, in mammalian sperm thermotaxis, as in vision, rhodopsin and melanopsin each triggers a different signaling pathway but, unlike in vision, both opsin types coexist in the same sperm cells.


Subject(s)
Rhodopsin/metabolism , Rod Opsins/metabolism , Signal Transduction , Spermatozoa/cytology , Spermatozoa/metabolism , Taxis Response , Animals , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...