Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Foods ; 13(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38731752

ABSTRACT

All over the world, especially in Western societies, table salt intake that is inordinately higher than the acceptable level has been observed. An excess of Na in the human diet, mostly from processed foods, is becoming the "number one killer", leading to increased blood pressure. Therefore, the food industry is faced with a need to reduce Na in human nutrition in an effort to raise public health protection to a higher level. In this study, a commercially available combination of Na/K salts (COMB) at different concentrations was used as a NaCl substitute in the production of a modified, healthier, Na-reduced cheese. Samples of the modified low-Na white soft-brined cheese (WSBC) were produced by adding four different concentrations of COMB to production lots PL-1 to PL-4, and the control (CON) samples were prepared by salting with the usual, non-reduced concentration of NaCl. The effects of NaCl replacement on the physical-chemical parameters, major- and micro-elements, and microstructural and sensory properties of the WSBC were investigated. The obtained results indicated that there was no significant influence on the ash content, pH, and aw. The Na and K levels differed among treatments (p < 0.001). The lowest Na level in this study was recorded in PL-4 (only COMB was added) and was 334.80 ± 24.60 mg/100 g. According to the Na content, WSBC PL4 can be labeled with the nutrient claim "reduced amount of Na". A significant difference (p < 0.05) was noticed in overall acceptance between the CON and PL-4, with no statistically significant difference found amongst other WSBC production lots. The replacement of NaCl resulted in a slightly greater firmness of the WSBC. The results confirm the possibility of producing low-Na WSBC when optimal amounts of a suitable mineral salt are used as a substitute for NaCl, thus reducing the risk of high Na intake in the human body through the consumption of evaluated cheese.

2.
Biology (Basel) ; 13(5)2024 May 13.
Article in English | MEDLINE | ID: mdl-38785822

ABSTRACT

Seed germination is a complex process that can be negatively affected by numerous stresses. Trichoderma spp. are known as effective biocontrol agents as well as plant growth and germination stimulators. However, understanding of the early interactions between seeds and Trichoderma spp. remains limited. In the present paper, Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopy were used to reveal the nature of tomato seed germination as stimulated by Trichoderma. A rapid response of tomato seeds to Trichoderma spp. was observed within 48 h on Murashige and Skoog medium (MS) substrate, preceding any physical contact. Raman analysis indicated that both Trichoderma species stimulated phenolic compound synthesis by triggering plant-specific responses in seed radicles. The impact of T. harzianum and T. brevicompactum on two tomato cultivars resulted in alterations to the middle lamella pectin, cellulose, and xyloglucan in the primary cell wall. The Raman spectra indicated increased xylan content in NA with T9 treatment as well as increased hemicelluloses in GZ with T4 treatment. Moreover, T4 treatment resulted in elevated conjugated aldehydes in lignin in GZ, whereas the trend was reversed in NA. Additionally, FTIR analysis revealed significant changes in total protein levels in Trichoderma spp.-treated tomato seed radicles, with simultaneous decreases in pectin and/or xyloglucan. Our results indicate that two complementary spectroscopic methods, FTIR and Raman spectroscopy, can give valuable information on rapid changes in the plant cell wall structure of tomato radicles during germination stimulated by Trichoderma spp.

3.
Microsyst Nanoeng ; 10: 47, 2024.
Article in English | MEDLINE | ID: mdl-38590818

ABSTRACT

Studying the membrane physiology of filamentous fungi is key to understanding their interactions with the environment and crucial for developing new therapeutic strategies for disease-causing pathogens. However, their plasma membrane has been inaccessible for a micron-sized patch-clamp pipette for pA current recordings due to the rigid chitinous cell wall. Here, we report the first femtosecond IR laser nanosurgery of the cell wall of the filamentous fungi, which enabled patch-clamp measurements on protoplasts released from hyphae. A reproducible and highly precise (diffraction-limited, submicron resolution) method for obtaining viable released protoplasts was developed. Protoplast release from the nanosurgery-generated incisions in the cell wall was achieved from different regions of the hyphae. The plasma membrane of the obtained protoplasts formed tight and high-resistance (GΩ) contacts with the recording pipette. The entire nanosurgical procedure followed by the patch-clamp technique could be completed in less than 1 hour. Compared to previous studies using heterologously expressed channels, this technique provides the opportunity to identify new ionic currents and to study the properties of the ion channels in the protoplasts of filamentous fungi in their native environment.

4.
Foods ; 13(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38472870

ABSTRACT

The aim of this study was to analyze in detail the phytochemical composition of amaranth (AMJ), red beet (RBJ), and broccoli (BCJ) microgreens and cold-pressed juices and to evaluate the antioxidant and sensory properties of the juices. The results showed the presence of various phenolic compounds in all samples, namely betalains in amaranth and red beet microgreens, while glucosinolates were only detected in broccoli microgreens. Phenolic acids and derivatives dominated in amaranth and broccoli microgreens, while apigenin C-glycosides were most abundant in red beet microgreens. Cold-pressing of microgreens into juice significantly altered the profiles of bioactive compounds. Various isothiocyanates were detected in BCJ, while more phenolic acid aglycones and their derivatives with organic acids (quinic acid and malic acid) were identified in all juices. Microgreen juices exhibited good antioxidant properties, especially ABTS•+ scavenging activity and ferric reducing antioxidant power. Microgreen juices had mild acidity, low sugar content, and good sensory acceptability and quality with the typical flavors of the respective microgreen species. Cold-pressed microgreen juices from AMJ, RBJ, and BCJ represent a rich source of bioactive compounds and can be characterized as novel functional products.

5.
J Sci Food Agric ; 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38308592

ABSTRACT

BACKGROUND: Titanium dioxide (TiO2 ) is banned in some countries but its use is still permitted in others. The global food supply chain is therefore challenged with the need to use rapid and reliable testing methods to either detect the presence of TiO2 or to quantify its concentration. The goal of this study was to determine the feasibility of using color, texture profile analysis, Raman microscopy, and X-ray fluorescence (XRF) spectroscopy to detect and quantify TiO2 in fillings used in the pastry and confectionery industry. In this study, two types of fillings were investigated: vanilla based and chocolate based. All fillings were prepared in four different variations - without TiO2 and with three concentrations as follows: 0.25 g*kg-1 , 0.5 g*kg-1 , or 0.75 g*kg-1 TiO2 per sample. The methods were selected for their ability to analyze the samples in a short period of time. RESULTS: All of the methods showed moderate to high potential for detecting TiO2 in the samples. The results reveal how TiO2 affects the food matrix color and texture. Use of Raman microscopy confirms its detectability, although concentrations of TiO2 do not follow a pattern. X-ray fluorescence spectroscopy showed the greatest potential as it can not only detect TiO2 but can also quantify its concentration in the samples. CONCLUSIONS: The highest potential for quantifying the concentration of this food additive was achieved with XRF. © 2024 Society of Chemical Industry.

6.
RSC Adv ; 13(34): 24112-24128, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37577093

ABSTRACT

Polyhydroxyoctanoate, as a biocompatible and biodegradable biopolymer, represents an ideal candidate for biomedical applications. However, physical properties make it unsuitable for electrospinning, currently the most widely used technique for fabrication of fibrous scaffolds. To overcome this, it was blended with polylactic acid and polymer blend fibrous biomaterials were produced by electrospinning. The obtained PLA/PHO fibers were cylindrical, smaller in size, more hydrophilic and had a higher degree of biopolymer crystallinity and more favorable mechanical properties in comparison to the pure PLA sample. Cytotoxicity evaluation with human lung fibroblasts (MRC5 cells) combined with confocal microscopy were used to visualize mouse embryonic fibroblasts (MEF 3T3 cell line) migration and distribution showed that PLA/PHO samples support exceptional cell adhesion and viability, indicating excellent biocompatibility. The obtained results suggest that PLA/PHO fibrous biomaterials can be potentially used as biocompatible, biomimetic scaffolds for tissue engineering applications.

7.
Foods ; 12(13)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37444206

ABSTRACT

This study investigates the effects of ultrasound, in combination with chemical pretreatments, on the quality attributes (total phenolic and carotenoid content, antioxidant activity (2,2-Diphenyl-1-picrylhydrazyl assay (DPPH)), ferric-reducing ability (FRAP), CIE L* a* b* color, non-enzymatic browning, rehydration ratio, textural and morphological properties) of red pepper subjected to drying (hot air drying or freeze drying). The fractional factorial design was used to assess the impact of factors. The global Derringer desirability function was used to determine the optimal conditions for the best quality attributes of dried pepper. The drying method influenced total phenolic content, a* (redness), and initial rehydration ratio; pretreatment time significantly affected FRAP antiradical activity, a*, chroma and non-browning index, while pH-value had a significant effect on the texture of dried pepper. Non-enzymatic browning was reduced to 72.6%, while the DPPH antioxidant capacity of freeze-dried peppers was enhanced from 4.2% to 71.9%. Ultrasonic pretreatment led to changes in the pepper morphology, while potassium metabisulfite (KMS) was a more effective additive than citric acid.

8.
J Environ Sci Health B ; 58(5): 436-447, 2023.
Article in English | MEDLINE | ID: mdl-37291878

ABSTRACT

The aim of our study was to evaluate the use of Raman spectroscopy for pre-diagnostic estimation of weed response to bleaching herbicides. Model plants were Chenopodium album and Abutilon theophrasti treated with mesotrione (120 g a.i. ha-1). Raman single-point measurements were taken 1, 2, 3, and 7 days after herbicide application from different points on the leaves. Principal component analysis (PCA) was carried out on data normalized by the highest intensity band at 1522 cm-1 and using spectral region from 950 to 1650 cm-1 comprising mainly contributions of carotenoids. The carotenoids by intensive band at ∼1522 cm-1 and bands with lower intensity at ∼1155 and 1007 cm-1 in treated plants were confirmed. According to PC1 (the first principal component) and PC2 (the second principal component), the highest intensity bands responsible for treatment differentiation in C. album could be assigned to chlorophyll, lignin, and carotenes. According to PC1 in A. theophrasti leaves the treatment differences could be observed 7 days after mesotrione treatment and PC2 gave a clear separation between all control and treated leaf samples. Raman spectroscopy may be a good complement to invasive analytical methods, in assessing the plant abiotic stress induced by bleaching herbicides.


Subject(s)
Herbicides , Herbicides/toxicity , Spectrum Analysis, Raman , Cyclohexanones/pharmacology , Carotenoids , Weed Control
9.
Food Technol Biotechnol ; 60(2): 237-252, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35910273

ABSTRACT

Research background: Due to numerous health-promoting properties, dandelion has been used in traditional medicine as a herbal remedy, but also as a food product. Dandelion health benefits are ascribed to the presence of different bioactive compounds in its tissues, among which polyphenols play a significant role. However, the low stability of polyphenols is a critical parameter for their successful implementation into products. Thus, their encapsulation using appropriate carrier vehicles is highlighted as an effective technique for their stabilization and protection. The aim of this study is to microencapsulate dandelion leaf extract using spray drying and different carrier materials for the first time. Experimental approach: In spray drying, low inlet temperature of 130 °C was employed to preserve sensitive dandelion polyphenols, while guar gum, gum arabic, inulin, maltodextrin, pectin and alginate were used as carriers. The influence of different carriers and their content on physicochemical, morphological and colour properties, polyphenolic content and encapsulation efficiency of polyphenols in dandelion powders was examined. Specific polyphenols were determined using HPLC-PAD analysis. Their release profiles and antioxidant capacity in simulated gastrointestinal conditions were also evaluated. Results and conclusions: Compared to plain dandelion powder, carrier-containing dandelion powders have favourably increased solubility, enhanced flow and cohesive properties, reduced particle size and prolonged release of polyphenols under simulated gastrointestinal conditions. Powders were characterized by low moisture content (~2-8%) and high solubility (~92-97%). Chicoric acid was the most abundant compound in dandelion powders. Pectin-dandelion powder showed to be the most effective for microencapsulation of polyphenols, especially for chicoric acid entrapment (74.4%). Alginate-dandelion powder enabled the slowest gradual release of polyphenols. Novelty and scientific contribution: Spray drying at 130 °C and the applied carriers proved to be effective for microencapsulation of dandelion extract, where polyphenolic-rich dandelion powders, due to good physicochemical and encapsulation properties, could serve for the enrichment/production of different functional food products. Also, due to the lack of data on dandelion encapsulation, the obtained results could be of great interest for researchers in the encapsulation field, but also for food industry, especially in the field of instant powders.

10.
Food Technol Biotechnol ; 60(1): 67-79, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35440876

ABSTRACT

Research background: In the recent years, considerable attention has been given to selenium status since its deficiency is linked with various disorders and affects at least 13% of world population. Additionally, mushrooms are known to possess pronounced capacity for absorption of various micronutrients, including Se, from soil/substrate. Here, we investigate the possibility of using Se-rich zeolitic tuff as a supplement for production of selenized mushroom. Furthermore, the impact of the enrichment on the activity of antioxidant enzymes and biological potential of Coriolus versicolor medicinal mushroom is studied. Experimental approach: Se(IV)- and Se(VI)-modified natural zeolitic tuff from the Serbian deposit Zlatokop was used as supplement for mushroom cultivation. To examine the effectiveness of selenium enrichment, we determined total selenium with inductively coupled plasma mass spectrometry (ICP-MS), together with the activity of antioxidant enzymes in fresh fruiting bodies and biological potential of methanolic extracts. Antioxidant activity was evaluated using the appropriate tests for: inhibition of lipid peroxidation, DPPH free radical scavenging assay, Fe(III)-reducing antioxidant power assay and ability of chelating Fe2+ ions. The antibacterial activity against foodborne pathogens was measured by broth microdilution assay. Additionally, chemical composition of the prepared extracts was studied using UV-Vis and Fourier transform infrared (FTIR) spectroscopy. Results and conclusions: Content of selenium detected in biofortified C. versicolor was even 470 times higher than in control on dry mass basis ((140.7±3.8) vs (0.3±0.1) µg/g), proving that Se-rich zeolitic tuff is an excellent supplement for mushroom production. Furthermore, the results of monitoring the activity of antioxidant enzymes revealed that most of the Se-enriched mushrooms exhibited higher superoxide dismutase (SOD) and catalase (CAT) and lower glutathione peroxidase (GSH-Px) activities than control. Due to higher amounts of enzymes, which can quickly catalyze the reduction of superoxide radicals, the quality of selenium-enriched mushrooms is preserved for a longer period of time. Investigation of biological potential indicated that Se-enriched mushroom methanolic extracts, generally, expressed enhanced antioxidant properties. Additionally, extracts showed antibacterial activity against all tested pathogenic microorganisms. Novelty and scientific contribution: Cultivation of mushrooms on Se-enriched zeolitic tuff is a new technological approach for obtaining Se-fortified food/supplements with enhanced antioxidant and antibacterial activities.

11.
Foods ; 11(3)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35159540

ABSTRACT

In this study, in order to develop zein-based, edible, functional food-contact materials in different forms incorporating sage extract (10, 20, and 30%), solvent casting and electrospinning were employed. The study aimed to assess the effects of the applied techniques and the extract's incorporation on the materials' properties. The solvent casting generated continuous and compact films, where the extract's incorporation provided more homogenous surfaces. The electrospinning resulted in non-woven mats composed of ribbon-like fibers in the range of 1.275-1.829 µm, while the extract's incorporation provided thinner and branched fibers. The results indicated the compatibility between the materials' constituents, and efficient and homogenous extract incorporation within the zein matrices, with more probable interactions occurring during the solvent casting. All of the formulations had a high dry matter content, whereas the mats and the formulations incorporating the extract had higher solubility and swelling in water. The films and mats presented similar DPPH• and ABTS•+ radical scavenging abilities, while the influence on Staphylococcus aureus and Salmonella enterica subsp. enterica serovar Typhimurium bacteria, and the growth inhibition, were complex. The antioxidant and antibacterial activity of the materials were more potent after the extract's incorporation. Overall, the results highlight the potential of the developed edible materials for use as food-contact materials with active/bioactive functionality.

12.
Biomolecules ; 11(7)2021 06 30.
Article in English | MEDLINE | ID: mdl-34208895

ABSTRACT

The aim of this research was phenolics and protein characterization and antioxidant properties evaluation of skimmed thermally treated goat's milk powder enriched with different concentration of grape pomace seed extract (SE). The dominant phenolics in SE were phenolic acids, flavan-3-ols and procyanidins. Different electrophoretic techniques together with UHPLC-MS/MS analysis revealed the presence of phenolics-protein interactions in the samples, mainly procyanidins with whey protein/caseins complexes. Addition of SE into thermally treated goat's milk significantly improved antioxidant properties of goat's milk such as TAC, FRP, DPPH• and ABTS•+ scavenging activity. Gallic acid, catechin, and procyanidins mostly contributed to these activities. The schematic representation of phenolics-casein micelles interactions in thermally treated goat's milk enriched with SE was given. The addition of SE into thermally treated goat's milk can be a promising strategy in food waste recovery and to enhance the beneficial health effects of goat's milk-based functional foods.


Subject(s)
Dietary Supplements/analysis , Grape Seed Extract/chemistry , Milk/chemistry , Animals , Caseins , Flavonoids/analysis , Goats/metabolism , Hydroxybenzoates/analysis , Plant Extracts/chemistry , Powders , Proanthocyanidins/analysis , Refuse Disposal/methods , Tandem Mass Spectrometry/methods
13.
Molecules ; 26(13)2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34203164

ABSTRACT

Freeze drying was compared with spray drying regarding feasibility to process wild thyme drugs in order to obtain dry formulations at laboratory scale starting from liquid extracts produced by different extraction methods: maceration and heat-, ultrasound-, and microwave-assisted extractions. Higher total powder yield (based on the dry weight prior to extraction) was achieved by freeze than spray drying and lower loss of total polyphenol content (TPC) and total flavonoid content (TFC) due to the drying process. Gelatin as a coating agent (5% w/w) provided better TPC recovery by 70% in case of lyophilization and higher total powder yield in case of spray drying by diminishing material deposition on the wall of the drying chamber. The resulting gelatin-free and gelatin-containing powders carried polyphenols in amount ~190 and 53-75 mg gallic acid equivalents GAE/g of powder, respectively. Microwave-assisted extract formulation was distinguished from the others by a higher content of polyphenols, proteins and sugars, higher bulk density and lower solubility. The type of the drying process mainly affected the position of the gelatin-derived -OH and amide bands in FTIR spectra. Spray-dried formulations compared to freeze-dried expressed higher thermal stability as confirmed by differential scanning calorimetry analysis and a higher diffusion coefficient; the last feature can be associated with the lower specific surface area of irregularly shaped freeze-dried particles (151-223 µm) compared to small microspheres (~8 µm) in spray-dried powder.


Subject(s)
Gelatin/chemistry , Plant Extracts/chemistry , Thymus Plant/chemistry , Freeze Drying , Spray Drying
14.
J Environ Manage ; 297: 113358, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34311248

ABSTRACT

The alkali treated subglebal tissue of the mosaic puffball (Handkea utriformis) (Sa) and Sa modified with hydroxyapatite (Sa-HAp), obtained by successive ionic layer adsorption and reaction (SILAR) method, were used for the removal of Pb2+, Cd2+ and Ni2+ from aqueous solution. The materials were characterized by FT-IR, Raman, SEM and EDS analysis and by determination of pHPZC. The adsorption performances of Sa and Sa-HAp were assessed in batch experiments at different pH, contact times, temperatures and mass of the adsorbent. Different models of adsorption isotherms were used, and the best fit was obtained with the Langmuir model. Maximum adsorption capacities of Sa towards Pb2+, Cd2+ and Ni2+ were 44.82, 15.54 and 17.21 mg g-1, while for Sa-HAp were 79.55, 52.59 and 45.01 mg g-1, respectively. Kinetic data were well fitted by a pseudo second-order model, while thermodynamic studies disclose spontaneous and endothermic adsorption process. The Sa-Hap was successfully regenerated with 1 M NaCl and after the fifth desorption cycle and 10 h achieved 82.9, 69.7 and 60.4 %, while for 0.5 M NaCl + 0.5 M NaOH and 1 h was 78.3, 64.1, 57.5 % of desorbed Pb2+, Cd2+ and Ni2+, respectively. The competitive study and results from a column system confirmed good applicability of Sa-HAp adsorbent.


Subject(s)
Agaricales , Metals, Heavy , Water Pollutants, Chemical , Adsorption , Hydrogen-Ion Concentration , Kinetics , Solutions , Spectroscopy, Fourier Transform Infrared , Thermodynamics , Water Pollutants, Chemical/analysis
15.
Foods ; 10(5)2021 May 18.
Article in English | MEDLINE | ID: mdl-34070165

ABSTRACT

Goat cheeses from high heat treated milk (HHTM: 80 °C/5 min (E1) and 90 °C/5 min (E2)), could be regarded as new products, compared to their analogues made from commonly pasteurized milk (65 °C/30 min (C)). Descriptive analysis and consumer tests with a hedonic scale and JAR scale were part of the product development process. The use of scanning electron microscopy enabled deeper insight into the flavor and texture of the cheeses. In all cheese variants, goaty flavor was mildly pronounced. Young HHTM cheeses also had a pronounced whey and cooked/milky flavor. Consumers found such flavor 'too intensive'. Unlike the control variant, HHTM cheeses were not described as 'too hard'. Such improvement in texture was found to be a result of fine, highly branched microstructure, sustained over the course of ripening time and highly incorporated milk fat globules inside the cheese mass. Cluster analysis showed that the largest group of consumers (47.5%) preferred E2 cheese. Although consumers found that most of the cheeses were 'too salty', this excess did not decrease their overall acceptance. Neither microstructure analysis nor descriptive sensory analysis of goat white brined cheeses produced from high heat treated milk has been done before.

16.
Food Chem ; 351: 129310, 2021 Jul 30.
Article in English | MEDLINE | ID: mdl-33640767

ABSTRACT

The aim of research was to determine polyphenols bioaccessibility and antioxidant properties of thermally-treated skimmed goat milk enriched with sunflower bee-collected pollen through in vitro digestion. HPLC analysis confirmed that pollen-enriched milk contained flavonols as the main phenolic fraction (80.7-76.2%) followed by phenolic acids (14.2-17.4%). Among individual compounds quercetin-3-O-glucoside (155.1-197.2 µg/L) and p-coumaric acid (29.5-30.7 µg/L) were the main quantified flavonols and phenolic acids, respectively. After digestion of milk/pollen sample, total polyphenols recovery was 30.71% with higher phenolic acids recovery (40.1%) compared to flavonols (28.3%) indicating strong interactions between caprine milk casein micelles and pollen polyphenols. Applied antioxidant assays (phosphomolybdenum, ABTS•+scavenging activity and ferrous-ion-chelating capacity) have confirmed complexity of prepared product- it had high ability to quench ABTS•+ radicals and to form chelating complexes with Fe2+ ions. Digestion provoked 20% reduction in total antioxidant capacity compared to the initial sample. TTSG milk/pollen powder could be good functional ingredient.


Subject(s)
Antioxidants/analysis , Flavonols/analysis , Milk/chemistry , Pollen/chemistry , Polyphenols/analysis , Animals , Bees , Chromatography, High Pressure Liquid , Glucosides/analysis , Goats , Quercetin/analogs & derivatives , Quercetin/analysis
17.
Food Chem ; 342: 128344, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33268175

ABSTRACT

Medicinal mushrooms, Coriolus versicolor and Lentinus edodes are extremely attractive as nutraceuticals. Here we used fruiting bodies to prepare novel kombucha beverage. Microbiological, physicochemical and chemical properties were monitored for eleven days, while the immunological properties of kombucha polysaccharide extracts were determined in peripheral blood mononuclear cell (PBMC) cultures. FTIR analysis of polysaccharide extracts showed dominant presence of polysaccharides, in addition to phenols, lipids and proteins. C. versicolor kombucha extract displayed more complex polysaccharides, and a higher content of total polysaccharides, phenols and flavonoids compared to L. edodes kombucha extract. The extracts were not cytotoxic for PBMC in vitro up to 500 µg/ml, while immunomodulatory effects depended on their chemical compositions. The most prominent effect was on the reduction of Th2 cytokines and IL-10 in PBMC cultures. Based on these results, novel kombucha products could be recommended as functional beverages or nutraceuticals with potentially beneficial immunomodulatory effects in allergies.


Subject(s)
Beverages/microbiology , Fermentation , Fungal Polysaccharides/immunology , Immunologic Factors/pharmacology , Polyporaceae/chemistry , Polyporaceae/metabolism , Fungal Polysaccharides/chemistry , Immunologic Factors/chemistry , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology
18.
Sci Rep ; 10(1): 6359, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32286443

ABSTRACT

Remodelling of collagen fibers has been described during every phase of cancer genesis and progression. Changes in morphology and organization of collagen fibers contribute to the formation of microenvironment that favors cancer progression and development of metastasis. However, there are only few data about remodelling of collagen fibers in healthy looking mucosa distant from the cancer. Using SHG imaging, electron microscopy and specialized softwares (CT-FIRE, CurveAlign and FiberFit), we objectively visualized and quantified changes in morphology and organization of collagen fibers and investigated possible causes of collagen remodelling (change in syntheses, degradation and collagen cross-linking) in the colon mucosa 10 cm and 20 cm away from the cancer in comparison with healthy mucosa. We showed that in the lamina propria this far from the colon cancer, there were changes in collagen architecture (width, straightness, alignment of collagen fibers and collagen molecules inside fibers), increased representation of myofibroblasts and increase expression of collagen-remodelling enzymes (LOX and MMP2). Thus, the changes in organization of collagen fibers, which were already described in the cancer microenvironment, also exist in the mucosa far from the cancer, but smaller in magnitude.


Subject(s)
Collagen/metabolism , Colonic Neoplasms/metabolism , Matrix Metalloproteinase 2/genetics , Protein-Lysine 6-Oxidase/genetics , Aged , Collagen/ultrastructure , Colon/metabolism , Colon/ultrastructure , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Colonic Neoplasms/ultrastructure , Disease Progression , Extracellular Matrix/pathology , Extracellular Matrix/ultrastructure , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Intestinal Mucosa/pathology , Intestinal Mucosa/ultrastructure , Male , Microscopy, Electron , Software , Tumor Microenvironment/genetics
19.
Foods ; 9(3)2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32143313

ABSTRACT

Rennet coagulation of goat milk heated to 65 °C/30 min (Gc), 80 °C/5 min (G8) and 90 °C/5 min (G9) was studied. A rheometer equipped with a vane geometry tool was used to measure milk coagulation parameters and viscoelastic properties of rennet gels. Yield parameters: curd yield, laboratory curd yield and curd yield efficiency were measured and calculated. Scanning electron microscopy of rennet gels was conducted. Storage moduli (G') of gels at the moment of cutting were 19.9 ± 1.71 Pa (Gc), 11.9 ± 1.96 Pa (G8) and 7.3 ± 1.46 Pa (G9). Aggregation rate and curd firmness decreased with the increase of milk heating temperature, while coagulation time did not change significantly. High heat treatment of goat milk had a significant effect on both laboratory curd yield and curd yield. However, laboratory curd yield (27.7 ± 1.84%) of the G9 treatment was unreasonably high compared to curd yield (15.4 ± 0.60%). The microstructure of G9 was notably different compared to Gc and G8, with a denser and more compact microstructure, smaller paracasein micelles and void spaces in a form of cracks indicating weaker cross links. The findings of this study might serve as the bases for the development of different cheese types produced from high-heat-treated goat milk.

20.
Int J Biol Macromol ; 154: 142-149, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32184141

ABSTRACT

Clozapine is an atypical antipsychotic used for the treatment of schizophrenia. The prescribed target daily doses may reach 900 mg. Literature studies report a connection between clozapine usage and thrombosis development. Our in vitro study aimed to provide insight into molecular bases of this observation, investigating clozapine binding to fibrinogen, the main plasma protein involved in hemostasis. Fibrinogen/clozapine interaction was confirmed by protein fluorescence quenching, with an affinity constant of 1.7 × 105 M-1. Direct interactions did not affect the structure of fibrinogen, nor fibrinogen melting temperature. Clozapine binding affected fibrin formation by reducing coagulation speed and thickness of fibrin fibers suggesting that in the presence of clozapine, fibrinogen may acquire thrombogenic characteristics. Although no difference in fibrin gel porosity was detected, other factors present in the blood may act synergistically with altered fibrin formation to modify fibrin clot, thus increasing the risk for development of thrombosis in patients on clozapine treatment. ORAC and HORAC assays showed that clozapine reduced free radical-induced oxidation of fibrinogen. All observed effects of clozapine on fibrinogen are dose-dependent, with the effect on fibrin formation being more pronounced.


Subject(s)
Antipsychotic Agents/metabolism , Antipsychotic Agents/pharmacology , Clozapine/metabolism , Clozapine/pharmacology , Fibrin/biosynthesis , Fibrinogen/metabolism , Dose-Response Relationship, Drug
SELECTION OF CITATIONS
SEARCH DETAIL
...