Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 63(20): 11639-11662, 2020 10 22.
Article in English | MEDLINE | ID: mdl-32969660

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a rare and devastating chronic lung disease of unknown etiology. Despite the approved treatment options nintedanib and pirfenidone, the medical need for a safe and well-tolerated antifibrotic treatment of IPF remains high. The human prostaglandin F receptor (hFP-R) is widely expressed in the lung tissue and constitutes an attractive target for the treatment of fibrotic lung diseases. Herein, we present our research toward novel quinoline-based hFP-R antagonists, including synthesis and detailed structure-activity relationship (SAR). Starting from a high-throughput screening (HTS) hit of our corporate compound library, multiple parameter improvements-including increase of the relative oral bioavailability Frel from 3 to ≥100%-led to a highly potent and selective hFP-R antagonist with complete oral absorption from suspension. BAY-6672 (46) represents-to the best of our knowledge-the first reported FP-R antagonist to demonstrate in vivo efficacy in a preclinical animal model of lung fibrosis, thus paving the way for a new treatment option in IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis/drug therapy , Lung/drug effects , Quinolines/chemical synthesis , Receptors, Prostaglandin/antagonists & inhibitors , Administration, Oral , Animals , Disease Models, Animal , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Lung/metabolism , Lung/pathology , Male , Mice , Molecular Structure , Quinolines/chemistry , Quinolines/therapeutic use , Rats , Rats, Wistar , Structure-Activity Relationship
2.
Org Process Res Dev ; 24(8): 1443-1456, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32905065

ABSTRACT

The perfect separation with optimal productivity, yield, and purity is very difficult to achieve. Despite its high selectivity, in crystallization unwanted impurities routinely contaminate a crystallization product. Awareness of the mechanism by which the impurity incorporates is key to understanding how to achieve crystals of higher purity. Here, we present a general workflow which can rapidly identify the mechanism of impurity incorporation responsible for poor impurity rejection during a crystallization. A series of four general experiments using standard laboratory instrumentation is required for successful discrimination between incorporation mechanisms. The workflow is demonstrated using four examples of active pharmaceutical ingredients contaminated with structurally related organic impurities. Application of this workflow allows a targeted problem-solving approach to the management of impurities during industrial crystallization development, while also decreasing resources expended on process development.

SELECTION OF CITATIONS
SEARCH DETAIL
...