Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Vector Ecol ; 45(2): 366-379, 2020 12.
Article in English | MEDLINE | ID: mdl-33207064

ABSTRACT

Wing lengths of parous (P) and nulliparous (NP) PCR-identified female Anopheles belenrae, An. kleini, An. pullus, and An. sinensis were determined from weekly trap collections at Camp Humphreys (CH), Ganghwa Island (GH), and Warrior Base (WB), Republic of Korea (ROK) during Jun-Oct, 2009. Wing length was greatest at the beginning and end of the study period. Wing length of NPs tended to be less than that of Ps before the period of maximum greening (Jul-Aug) but greater thereafter. Larger specimens tended to be Ps, and weekly wing length of Ps appeared less variable than NPs, possibly due to selection. A bimodal wing length frequency distribution of An. sinensis suggested two forms comprising small- (≤4.5 mm, SW) and large-winged females (>4.5 mm, LW). LW comprised the majority of peaks in abundance, however %SW, while still a minority, often increased during these times suggesting a density-dependent effect. At WB and GH, a two to three-week periodicity in %SW was obvious for An. sinensis and An. kleini. Analyses of weather station and satellite data showed that smaller-winged An. sinensis were associated with warmer, more humid, and greener times of the year. SW and LW specimens possibly result from agricultural practices that are common across large areas; regular synchronous peaks of SW and LW were observed from different sites. Peaks in SW Ps followed peaks in NPs in a 'ripple effect' one to two weeks apart, suggesting that wing length combined with parity could be used to follow the emergence and survival of mosquito cohorts.


Subject(s)
Anopheles , Mosquito Vectors , Wings, Animal , Animals , Female , Anopheles/growth & development , Mosquito Vectors/growth & development , Population Dynamics , Republic of Korea , Seasons , Weather , Wings, Animal/growth & development
2.
Parasit Vectors ; 5: 44, 2012 Feb 21.
Article in English | MEDLINE | ID: mdl-22353437

ABSTRACT

BACKGROUND: Mosquitoes belonging to the Albitarsis Group (Anopheles: Nyssorhynchus) are of importance as malaria vectors across the Neotropics. The Group currently comprises six known species, and recent studies have indicated further hidden biodiversity within the Group. DNA barcoding has been proposed as a highly useful tool for species recognition, although its discriminatory utility has not been verified in closely related taxa across a wide geographic distribution. METHODS: DNA barcodes (658 bp of the mtDNA Cytochrome c Oxidase--COI) were generated for 565 An. albitarsis s.l. collected in Argentina, Brazil, Colombia, Paraguay, Trinidad and Venezuela over the past twenty years, including specimens from type series and type localities. Here we test the utility of currently advocated barcoding methodologies, including the Kimura-two-parameter distance model (K2P) and Neighbor-joining analysis (NJ), for determining species delineation within mosquitoes of the Neotropical Albitarsis Group of malaria vectors (Anopheles: Nyssorhynchus), and compare results with Bayesian analysis. RESULTS: Species delineation through barcoding analysis and Bayesian phylogenetic analysis, fully concur. Analysis of 565 sequences (302 unique haplotypes) resolved nine NJ tree clusters, with less than 2% intra-node variation. Mean intra-specific variation (K2P) was 0.009 (range 0.002-0.014), whereas mean inter-specific divergence were several-fold higher at 0.041 (0.020-0.056), supporting the reported "barcoding gap". These results show full support for separate species status of the six known species in the Albitarsis Group (An. albitarsis s.s., An. albitarsis F, An. deaneorum, An. janconnae, An. marajoara and An. oryzalimnetes), and also support species level status for two previously detected lineages--An. albitarsis G &An. albitarsis I (designated herein). In addition, we highlight the presence of a unique mitochondrial lineage close to An. deaneorum and An. marajoara (An. albitarsis H) from Rondônia and Mato Grosso in southwestern Brazil. Further integrated studies are required to confirm the status of this lineage. CONCLUSIONS: DNA barcoding provides a reliable means of identifying both known and undiscovered biodiversity within the closely related taxa of the Albitarsis Group. We advocate its usage in future studies to elucidate the vector competence and respective distributions of all eight species in the Albitarsis Group and the novel mitochondrial lineage (An. albitarsis H) recovered in this study.


Subject(s)
Anopheles/classification , Anopheles/genetics , DNA Barcoding, Taxonomic/methods , Disease Vectors , Entomology/methods , Genetic Variation , Animals , DNA, Mitochondrial/chemistry , DNA, Mitochondrial/genetics , Electron Transport Complex IV/genetics , Molecular Sequence Data , Sequence Analysis, DNA , South America
3.
Insect Biochem Mol Biol ; 35(5): 369-80, 2005 May.
Article in English | MEDLINE | ID: mdl-15804572

ABSTRACT

Upon encountering an object recognized as foreign, insect hemocytes aggregate in multiple layers on the surfaces of the object in a process known as encapsulation. For encapsulation to occur, hemocytes must switch from their usual nonadherent state to an adherent state, presumably by regulating the activity of adhesion proteins. Although detailed knowledge exists regarding the adhesion receptors for cells of the mammalian immune system, comparable information on adhesion molecules of insect hemocytes and their function in immune responses is extremely limited. We report here the identification of an integrin present exclusively on the surface of hemocytes in the tobacco hornworm, Manduca sexta. Monoclonal antibodies MS13 and MS34, which bind to plasmatocytes and block encapsulation, were used for immunoaffinity chromatography to isolate their corresponding hemocyte antigen, which was revealed to be the same integrin beta subunit. A cDNA for this M. sexta integrin beta1 was cloned and characterized. Integrin-beta1 mRNA was detected by Northern analysis in hemocytes and not in other tissues tested. MS13 and MS34 were demonstrated to bind to a recombinant fragment of integrin beta1 consisting of the I-like domain, consistent with their blocking of a ligand-binding site and subsequent disruption of plasmatocyte adhesion. Injection of double stranded integrin-beta1 RNA into larvae resulted in decreased integrin beta1 expression in plasmatocytes and significantly suppressed encapsulation. These results indicate that activation of ligand-binding by the hemocyte-specific integrin plays a key role in stimulating plasmatocyte adhesion leading to encapsulation.


Subject(s)
Hemocytes/metabolism , Hemolymph/physiology , Integrin beta Chains/genetics , Manduca/genetics , Amino Acid Sequence , Animals , Cell Aggregation/genetics , Cell Aggregation/physiology , Integrin beta Chains/metabolism , Manduca/metabolism , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL
...