Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 384(6702): 1335-1339, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38900872

ABSTRACT

Vegetation and soils are taking up approximately 30% of anthropogenic carbon dioxide emissions because of small imbalances in large gross carbon exchanges from productivity and turnover that are poorly constrained. We combined a new budget of radiocarbon produced by nuclear bomb testing in the 1960s with model simulations to evaluate carbon cycling in terrestrial vegetation. We found that most state-of-the-art vegetation models used in the Coupled Model Intercomparison Project underestimated the radiocarbon accumulation in vegetation biomass. Our findings, combined with constraints on vegetation carbon stocks and productivity trends, imply that net primary productivity is likely at least 80 petagrams of carbon per year presently, compared with the 43 to 76 petagrams per year predicted by current models. Storage of anthropogenic carbon in terrestrial vegetation is likely more short-lived and vulnerable than previously predicted.


Subject(s)
Carbon Cycle , Carbon Dioxide , Carbon , Plants , Biomass , Carbon/metabolism , Carbon/analysis , Carbon Dioxide/metabolism , Carbon Dioxide/analysis , Carbon Radioisotopes/analysis , Nuclear Weapons , Plants/metabolism
2.
Philos Trans A Math Phys Eng Sci ; 381(2261): 20220203, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37807691

ABSTRACT

The direct way to estimate the regional fossil fuel CO2 surplus (ΔffCO2) at a station is by measuring the Δ14CO2 depletion compared with a respective background. However, this approach has several challenges, which are (i) the choice of an appropriate Δ14CO2 background, (ii) potential contaminations through nuclear 14CO2 emissions and (iii) masking of ΔffCO2 by 14C-enriched biosphere respiration. Here we evaluate these challenges and estimate potential biases and typical uncertainties of 14C-based ΔffCO2 estimates in Europe. We show that Mace Head (MHD), Ireland, is a representative background station for the Integrated Carbon Observation System (ICOS) atmosphere station network. The mean ΔffCO2 representativeness bias when using the MHD Δ14CO2 background for the whole observation network is of order 0.1 ± 0.3 ppm. At ICOS sites, the median nuclear contamination leads to 25% low-biased ΔffCO2 estimates if not corrected for. The ΔffCO2 masking due to 14C-enriched heterotrophic CO2 respiration can lead to similar ΔffCO2 biases as the nuclear contaminations, especially in summer. Our evaluation of all components contributing to the uncertainty of ΔffCO2 estimates reveals that, due to the small ffCO2 signals at ICOS stations, almost half of the 14C-based ΔffCO2 estimates from integrated samples have an uncertainty that is larger than 50%. This article is part of the Theo Murphy meeting issue 'Radiocarbon in the Anthropocene'.

3.
Science ; 352(6281): 80-4, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26966190

ABSTRACT

Between 1999 and 2006, a plateau interrupted the otherwise continuous increase of atmospheric methane concentration [CH4] since preindustrial times. Causes could be sink variability or a temporary reduction in industrial or climate-sensitive sources. We reconstructed the global history of [CH4] and its stable carbon isotopes from ice cores, archived air, and a global network of monitoring stations. A box-model analysis suggests that diminishing thermogenic emissions, probably from the fossil-fuel industry, and/or variations in the hydroxyl CH4 sink caused the [CH4] plateau. Thermogenic emissions did not resume to cause the renewed [CH4] rise after 2006, which contradicts emission inventories. Post-2006 source increases are predominantly biogenic, outside the Arctic, and arguably more consistent with agriculture than wetlands. If so, mitigating CH4 emissions must be balanced with the need for food production.

5.
Philos Trans A Math Phys Eng Sci ; 369(1943): 1906-24, 2011 May 28.
Article in English | MEDLINE | ID: mdl-21502166

ABSTRACT

Independent verification of greenhouse gas emissions reporting is a legal requirement of the Kyoto Protocol, which has not yet been fully accomplished. Here, we show that dedicated long-term atmospheric measurements of greenhouse gases, such as carbon dioxide (CO(2)) and methane (CH(4)), continuously conducted at polluted sites can provide the necessary tool for this undertaking. From our measurements at the semi-polluted Heidelberg site in the upper Rhine Valley, we find that in the catchment area CH(4) emissions decreased on average by 32±6% from the second half of the 1990s until the first half of the 2000s, but the observed long-term trend of emissions is considerably smaller than that previously reported for southwest Germany. In contrast, regional fossil fuel CO(2) levels, estimated from high-precision (14)CO(2) observations, do not show any significant decreasing trend since 1986, in agreement with the reported emissions for this region. In order to provide accurate verification, these regional measurements would best be accompanied by adequate atmospheric transport modelling as required to precisely determine the relevant catchment area of the measurements. Furthermore, reliable reconciliation of reported emissions will only be possible if these are known at high spatial resolution in the catchment area of the observations. This information should principally be available in all countries that regularly report their greenhouse gas emissions to the United Nations Framework Convention on Climate Change.

6.
Rapid Commun Mass Spectrom ; 22(20): 3261-9, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18819111

ABSTRACT

Past atmospheric composition can be reconstructed by the analysis of air enclosures in polar ice cores which archive ancient air in decadal to centennial resolution. Due to the different carbon isotopic signatures of different methane sources high-precision measurements of delta13CH4 in ice cores provide clues about the global methane cycle in the past. We developed a highly automated (continuous-flow) gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) technique for ice core samples of approximately 200 g. The methane is melt-extracted using a purge-and-trap method, then separated from the main air constituents, combusted and measured as CO2 by a conventional isotope ratio mass spectrometer. One CO2 working standard, one CH4 and two air reference gases are used to identify potential sources of isotope fractionation within the entire sample preparation process and to enhance the stability, reproducibility and accuracy of the measurement. After correction for gravitational fractionation, pre-industrial air samples from Greenland ice (1831 +/- 40 years) show a delta13C(VPDB) of -49.54 +/- 0.13 per thousand and Antarctic samples (1530 +/- 25 years) show a delta13C(VPDB) of -48.00 +/- 0.12 per thousand in good agreement with published data.

7.
Naturwissenschaften ; 95(3): 203-8, 2008 Mar.
Article in English | MEDLINE | ID: mdl-17938872

ABSTRACT

The lower troposphere is an excellent receptacle, which integrates anthropogenic greenhouse gases emissions over large areas. Therefore, atmospheric concentration observations over populated regions would provide the ultimate proof if sustained emissions changes have occurred. The most important anthropogenic greenhouse gas, carbon dioxide (CO(2)), also shows large natural concentration variations, which need to be disentangled from anthropogenic signals to assess changes in associated emissions. This is in principle possible for the fossil fuel CO(2) component (FFCO(2)) by high-precision radiocarbon ((14)C) analyses because FFCO(2) is free of radiocarbon. Long-term observations of (14)CO(2) conducted at two sites in south-western Germany do not yet reveal any significant trends in the regional fossil fuel CO(2) component. We rather observe strong inter-annual variations, which are largely imprinted by changes of atmospheric transport as supported by dedicated transport model simulations of fossil fuel CO(2). In this paper, we show that, depending on the remoteness of the site, changes of about 7-26% in fossil fuel emissions in respective catchment areas could be detected with confidence by high-precision atmospheric (14)CO(2) measurements when comparing 5-year averages if these inter-annual variations were taken into account. This perspective constitutes the urgently needed tool for validation of fossil fuel CO(2) emissions changes in the framework of the Kyoto protocol and successive climate initiatives.


Subject(s)
Air Pollutants/analysis , Carbon Dioxide/analysis , Fossil Fuels/analysis , Greenhouse Effect , Carbon Radioisotopes/analysis , European Union , Germany
8.
Sci Total Environ ; 391(2-3): 211-6, 2008 Mar 01.
Article in English | MEDLINE | ID: mdl-18037473

ABSTRACT

Monthly mean 14CO2 observations at two regional stations in Germany (Schauinsland observatory, Black Forest, and Heidelberg, upper Rhine valley) are compared with free tropospheric background measurements at the High Alpine Research Station Jungfraujoch (Swiss Alps) to estimate the regional fossil fuel CO2 surplus at the regional stations. The long-term mean fossil fuel CO2 surplus at Schauinsland is 1.31+/-0.09 ppm while it is 10.96+/-0.20 ppm in Heidelberg. No significant trend is observed at both sites over the last 20 years. Strong seasonal variations of the fossil fuel CO2 offsets indicate a strong seasonality of emissions but also of atmospheric dilution of ground level emissions by vertical mixing.


Subject(s)
Air Pollutants/analysis , Carbon Dioxide/analysis , Fossil Fuels , Carbon Radioisotopes/analysis , Environmental Monitoring , Germany , Switzerland
SELECTION OF CITATIONS
SEARCH DETAIL
...