Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
J Wildl Dis ; 60(1): 193-197, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37924242

ABSTRACT

A SARS-CoV-2 genomic and serologic survey was performed in a population of bobcats (Lynx rufus) inhabiting the state of Connecticut, USA. Wild animal populations are becoming established in densely populated cities with increased likelihood of direct or indirect contact with humans, as well as with household cats and dogs. Wild-caught bobcats (n=38) tested negative for SARS-CoV-2 genomic RNA by reverse-transcription quantitative PCR and for virus-neutralizing antibodies by ELISA, suggesting that either the species is not susceptible to SARS-CoV-2 or that the surveyed population has not yet been exposed to a source of infectious virus. However, this limited survey cannot rule out that human-to-bobcat or unknown reservoir-to-bobcat transmission of the virus occurs in nature.


Subject(s)
COVID-19 , Cat Diseases , Dog Diseases , Lynx , Humans , Animals , Cats , Dogs , SARS-CoV-2 , Connecticut/epidemiology , Suburban Population , COVID-19/epidemiology , COVID-19/veterinary , Cat Diseases/epidemiology
2.
Toxicol Lett ; 351: 155-162, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34517056

ABSTRACT

Perfluorooctanoic acid (PFOA), a member of the Per- and polyfluoroalkyl substances, is a highly persistent "forever" chemicals with increasing concern for its potential health effects. However, the mechanisms of PFOA immunotoxic effects are poorly understood. We assessed the antibody response to a physiological antigen stimulation and associated cytokine response upon PFOA exposure. The significant decrease in the IgM antibody response to the T cell dependent antigen keyhole limpet hemocyanin (KLH) at a dose lower than the previously documented LOAEL was accompanied by a significant reduction of the Th2 serum cytokines IL-5 and IL-13, a non-significant dose-response reduction of IL-4, a significant reduction of the Th1 cytokine IL-12, and a non-significant dose-response increase in IL-2 and IFNγ. PFOA significantly decreased the pro-inflammatory cytokines IL-17α and IL-1α, decreased (non-significantly but dose-response) IL-6, and a significantly increased TNFα. Overall, the modulation of serum Th1/Th2 cytokines could explain the reduction in antibody response, pointing to a potential role for T helper cells in the immunotoxicity of PFOA. Further, the higher than anticipated weight loss and increased liver weight, compared to previous studies using similar doses, highlight the potential importance of the route and duration of exposure, contributing to the total accumulated dose, in assessing the toxicity of PFOA.


Subject(s)
Caprylates/toxicity , Cytokines/metabolism , Fluorocarbons/toxicity , Immunoglobulin M/metabolism , Animals , Corticosterone/metabolism , Cytokines/genetics , Dose-Response Relationship, Drug , Female , Gene Expression Regulation/drug effects , Hemocyanins/immunology , Mice
3.
Animals (Basel) ; 11(3)2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33803547

ABSTRACT

Chelonid alphaherpesviruses 5 and 6 (ChHV5 and ChHV6) are viruses that affect wild sea turtle populations. ChHV5 is associated with the neoplastic disease fibropapillomatosis (FP), which affects green turtles (Chelonia mydas) in panzootic proportions. ChHV6 infection is associated with lung-eye-trachea disease (LETD), which has only been observed in maricultured sea turtles, although antibodies to ChHV6 have been detected in free-ranging turtles. To better understand herpesvirus prevalence and host immunity in various green turtle foraging aggregations in Florida, USA, our objectives were to compare measures of innate and adaptive immune function in relation to (1) FP tumor presence and severity, and (2) ChHV5 and ChHV6 infection status. Free-ranging, juvenile green turtles (N = 45) were captured and examined for external FP tumors in Florida's Big Bend, Indian River Lagoon, and Lake Worth Lagoon. Blood samples were collected upon capture and analyzed for ChHV5 and ChHV6 DNA, antibodies to ChHV5 and ChHV6, in vitro lymphocyte proliferation using a T-cell mitogen (concanavalin A), and natural killer cell activity. Despite an overall high FP prevalence (56%), ChHV5 DNA was only observed in one individual, whereas 20% of turtles tested positive for antibodies to ChHV5. ChHV6 DNA was not observed in any animals and only one turtle tested positive for ChHV6 antibodies. T-cell proliferation was not significantly related to FP presence, tumor burden, or ChHV5 seroprevalence; however, lymphocyte proliferation in response to concanavalin A was decreased in turtles with severe FP (N = 3). Lastly, green turtles with FP (N = 9) had significantly lower natural killer cell activity compared to FP-free turtles (N = 5). These results increase our understanding of immune system effects related to FP and provide evidence that immunosuppression occurs after the onset of FP disease.

4.
Sci Total Environ ; 780: 146399, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-33770593

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) make up a large group of persistent anthropogenic chemicals which are difficult to degrade and/or destroy. PFAS are an emerging class of contaminants, but little is known about the long-term health effects related to exposure. In addition, technologies to identify levels of contamination in the environment and to remediate contaminated sites are currently inadequate. In this opinion-type discussion paper, a team of researchers from the University of Connecticut and the University at Albany discuss the scientific challenges in their specific but intertwined PFAS research areas, including rapid and low-cost detection, energy-saving remediation, the role of T helper cells in immunotoxicity, and the biochemical and molecular effects of PFAS among community residents with measurable PFAS concentrations. Potential research directions that may be employed to address those challenges and improve the understanding of sensing, remediation, exposure to, and health effects of PFAS are then presented. We hope our account of emerging problems related to PFAS contamination will encourage a broad range of scientific experts to bring these research initiatives addressing PFAS into play on a national scale.

5.
Sci Total Environ ; 775: 144894, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-33631572

ABSTRACT

The Steller sea lion (SSL) population west of 144°W longitude experienced a significant population decline. While there appears to be a stable or increasing population trend in rookeries in the Gulf of Alaska (GOA) and Southeast Alaska (SEA), some rookeries within the Aleutian Islands (AI) have failed to recover. Previous studies found regional differences in whole blood total mercury concentrations ([THg]) showing more than 20% of AI pups had [THg] above critical thresholds for increased risk of immunological effects and other adverse outcomes. Measurements of immune cell-signaling proteins can be used to evaluate the immune status of marine mammals in relation to [THg]. We compared serum cytokine and chemokine concentrations in pups among regions (AI, eastern GOA, SEA), and examined associations among cytokines, chemokines, white blood cell (WBC) counts, and [THg]. Considering liver is an important target organ for mercury and immune protein synthesis we additionally examined the relationship of [THg] with liver-related enzymes serum aspartate (AST) and alanine aminotransferase (ALT). We observed regional differences in cytokine and chemokine measurements and immune protein associations. There was a positive association between total WBC counts and [THg] in AI pups, whereas a negative association between lymphocytes and [THg] in SEA pups. These findings may indicate regional variation in proliferation and differentiation of hematopoietic cells, differences in immune system development, and/or a difference in antigenic stimuli. No associations between [THg] and cytokines, chemokines, AST or ALT were found. Observed regional differences in cytokine and chemokine milieu during gestational and early development in SSL pups could lead to an imbalance in cell differentiation that could impact immunological resiliency in juvenile and adult life stages. We report concentration ranges of a suite of cytokines and chemokines which may prove to be a useful metric for ecotoxicology and risk assessment studies in SSLs and other wildlife.


Subject(s)
Mercury , Sea Lions , Alaska , Animals , Cytokines , Leukocyte Count , Mercury/analysis
6.
Environ Toxicol Chem ; 40(5): 1308-1321, 2021 05.
Article in English | MEDLINE | ID: mdl-33598929

ABSTRACT

Health assessments were conducted on bottlenose dolphins in Barataria Bay, Louisiana, USA, during 2011 to 2018, to assess potential health effects following the Deepwater Horizon oil spill, compared to the unoiled Sarasota Bay, Florida, USA, reference dolphin population. We previously reported significant increases in T-lymphocyte proliferation, as well as lower T helper 1 (Th1) cytokines, higher Th2 cytokine IL-4, and lower T regulatory (Treg) cytokine IL-10 in Barataria Bay in 2011 compared to Sarasota Bay, consistent with Deepwater Horizon oil exposure. Although values between 2013 and 2016 were more similar to those observed in Sarasota Bay, T-cell proliferation was again elevated and cytokine balance tilted toward Th2 in Barataria Bay during 2017-2018. In 2018, Barataria Bay dolphins had significantly more circulating Treg cells than Sarasota Bay dolphins. Mice experimentally exposed to oil also had significantly increased T-lymphocyte proliferation and circulating Treg cell number, including effects in their unexposed progeny. In vitro stimulation resulted in greater Th2 responsiveness in Barataria Bay compared to Sarasota Bay dolphins, and in vitro oil exposure of Sarasota Bay dolphin cells also resulted in enhanced Th2 responsiveness. Evidence points to Treg cells as a potential target for the immunomodulatory effects of oil exposure. The immunological trends observed in Barataria Bay appeared exaggerated in dolphins born after the spill, suggesting the possibility of continued oil exposure or multigenerational health consequences of exposure to oil, as observed in mice. Environ Toxicol Chem 2021;40:1308-1321. © 2021 SETAC.


Subject(s)
Bottle-Nosed Dolphin , Petroleum Pollution , Animals , Florida , Gulf of Mexico , Louisiana , Mice
7.
Sci Total Environ ; 745: 140978, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-32738684

ABSTRACT

Assessing polar bear (Ursus maritimus) immune function in relation to environmental stressors, including habitat change, nutritional stress, pathogen prevalence, and pollution, has been identified as critical for improved understanding of the species' health. The objectives of this study were two-fold: 1) to assess the role of climate-associated factors (habitat use, body condition) in explaining the plasma concentrations of contaminants in southern Beaufort Sea (SB) polar bears, and 2) to investigate how climate-associated factors, contaminant concentrations, and pathogen sero-prevalence influence the plasma concentrations of immune-signaling proteins called cytokines. A commercially available multiplex canine cytokine panel was validated for the quantification of five pro- and anti-inflammatory cytokines in polar bear plasma: tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), IL-8, IL-10, and interferon gamma-induced protein 10 (IP-10). This panel was then used to measure cytokine concentrations in 49 SB polar bears sampled in the springs of 2013 and 2014. Mean ∑PCBs (plasma), ∑OCs (plasma), and THg (hair) were 13.01 ± 1.52 ng g-1 w.w. (range: 0.17-52.63), 19.46 ± 1.17 ng g-1 w.w. (range: 6.63-45.82), and 0.49 µg g-1 d.w. (range: 0.99-15.18), respectively. Top models explaining variation in concentrations of plasma PCBs, plasma OC pesticides, and hair THg in SB polar bears included body mass index and/or habitat use (onshore versus offshore), with higher contaminant concentrations in leaner and/or offshore bears. Plasma cytokine concentrations were influenced most strongly by plasma PCBs and age, with little to no influence found for plasma OCs or hair THg concentrations, habitat use, or pathogen sero-prevalence. The lack of association between cytokines and these latter variables is likely due to a temporal disconnect between measured endpoints. The change of polar bear habitat use, feeding ecology, and body condition with ongoing climate warming is affecting exposure to contaminants and pathogens, with potential adverse consequences on a well-balanced immune system.


Subject(s)
Polychlorinated Biphenyls , Ursidae , Animals , Arctic Regions , Climate , Cytokines , Dogs , Ecosystem
8.
Sci Total Environ ; 725: 138308, 2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32302832

ABSTRACT

Steller sea lions (Eumetopias jubatus, SSLs) are managed as two distinct population segments within U.S. waters: the endangered western distinct population segment and the recently delisted eastern distinct population segment. Recent studies reported concentrations of mercury in several tissues collected from young SSLs in the Aleutian Islands that were at or above concentrations found to negatively impact health in other fish-eating mammals. However, there are limited studies which have investigated the range of mercury concentrations that may negatively influence the SSL immune system. This study assessed relationships between methyl mercury (MeHg+) concentrations and two immune functions, lymphocyte proliferation and cytokine expression. Peripheral blood mononuclear cells (PBMCs) were isolated and cryopreserved from pups on three rookeries within the western distinct population segment: Chiswell Island, Ulak, and Agattu Islands. Lymphocyte proliferation and cytokine expression were assessed in vitro using thawed PBMCs with exposure to MeHg+ (unexposed control, 0.001, 0.01, and 0.1 µg/ml). Lymphocyte proliferation was measured without and with stimulation with a T cell mitogen (ConA) and B cell mitogen (LPS) and the concentration of cytokines was measured in the cell culture supernatant (with and without ConA or LPS). Spontaneous lymphocyte proliferation was significantly increased at 0.01 and 0.1 µg/ml. T lymphocyte proliferation was significantly increased at 0.001 µg/ml and 0.1 µg/ml, while B lymphocyte proliferation was decreased at 0.1 µg/ml. Cytokine concentrations for INFγ, IL-10, IL-6, and TNFα were reduced at 0.1 µg/ml upon either T or B cell mitogen stimulation, with the exception for IL-10, where 0.1 µg/ml reduced IL-10 concentration compared to unstimulated cells. These data suggest immune functions were affected by MeHg+ exposure requiring in vivo follow up investigations. The observed modulation of immune functions is of concern as any toxicant-induced modulation may adversely affect the health of individuals, particularly younger animals undergoing periods of critical development.


Subject(s)
Mercury , Sea Lions , Alaska , Animals , Cell Proliferation , Cytokines , Leukocytes, Mononuclear , Lymphocytes
9.
Front Immunol ; 10: 1578, 2019.
Article in English | MEDLINE | ID: mdl-31481952

ABSTRACT

Considerable efforts have been made to better understand the immune system of bottlenose dolphins in view of the common environmental challenges they encounter, such as exposure to polychlorinated biphenyls, oil spills, or harmful algal bloom biotoxins. However, little is known about the identity and functionality of the Th1, Th2, and Treg T helper cell subsets in bottlenose dolphins. The present study aimed at validating assays and reagents to identify T helper cell subsets and their functions in a subset of dolphins from Sarasota Bay, Florida, USA, which have been long studied and often used as a reference population. A population of CD4+ FOXP3+ lymphocytes was identified representing an average <1% of blood lymphocyte population, which is in the range observed in for Treg cells in other species. The use of porcine reagents to measure TGFß, one of the key Treg cytokines, was further validated using the relatively high-throughput and highly standardized Luminex technology. The proportion of circulating Treg cells was not correlated with the serum concentrations of the Treg effector cytokines TGFß and IL-10, nor could it significantly contribute to predicting the variability of T lymphocyte proliferation, suggesting that not all dolphin circulating Treg cells are functional and active. However, stimulation of dolphin lymphocytes with TGFß and IL-2 increased the expression of the gene for TGFß and IL-10, and stimulation with IL-12 and IFNγ induced a robust increase in the expression of the gene for IFNγ, suggesting the potential for polarization and differentiation of dolphin T helper cells toward a Treg and Th1 response, respectively. The lack of an increase in the expression of the genes for the Th2 cytokines IL-4 and IL-13 upon stimulation with IL-4 may be due to the requirement for IL-2 for a Th2 polarization as described in mice. However, regression analysis and PCA suggested the potential ability of both the Th1 and Th2 response to be triggered upon acute inflammatory signals. These results may be useful in better understanding the mechanisms by which the dolphin immune system is affected upon exposure to environmental challenges and how it responds to pathogen challenges.


Subject(s)
Bottle-Nosed Dolphin/immunology , T-Lymphocyte Subsets/immunology , Th1 Cells/immunology , Th2 Cells/immunology , Animals , Cytokines/immunology
10.
Mar Environ Res ; 150: 104762, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31394415

ABSTRACT

The explosion of the Deepwater Horizon (DWH) oil exploration platform on April 20, 2010 began a catastrophic leak of approximately 640 million liters crude oil into the northern Gulf of Mexico (GOM), affecting more than 2100 km of coastline, including wetlands and estuaries that provide habitat and nursery for many aquatic species. Estuaries of the GOM are dynamic environments, with constant fluctuations in salinity and dissolved oxygen, including large hypoxic zones during summer months. Spawning fish in northern GOM estuaries following the DWH incident were at significant risk of oil exposure, and adverse environmental conditions at the time of exposure, such as hypoxia and low salinity, could have exacerbated developmental effects in the offspring. The present study investigated the effects of F0 parental oil exposure in different environmental scenarios on development of F1 sheepshead minnow (SHM) offspring. Adult SHM were exposed to the high-energy water accommodated fraction (HEWAF) of crude oil in three environmental scenarios: normoxic (NORM), hypoxic (HYP), and hypoxic with low salinity (HYP-LS). Parental HEWAF exposure in the NORM scenario resulted in developmental effects in F1 offspring, including altered heart rate, decreased length at hatch, and impaired prey capture. Co-exposure of F0 SHM to HEWAF and adverse environmental conditions altered HEWAF effects on F1 heart rate, hatch rate, prey capture, and survival. Time to hatch was not significantly impacted by parental HEWAF in any environmental scenario. The present study demonstrates that parental exposure to HEWAF results in developmental changes in F1 embryos, and co-exposure to adverse environmental conditions altered the effects for several developmental endpoints. These data suggest that SHM exposed to oil in estuaries experiencing hypoxia or low salinity may produce offspring with worsened outcomes. These developmental effects, in addition to previously reported reproductive effects in adult fish, could lead to long-term population level impacts for SHM.


Subject(s)
Killifishes , Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Estuaries , Female , Gulf of Mexico , Killifishes/growth & development , Male , Maternal Exposure , Paternal Exposure , Petroleum/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Water Pollutants, Chemical/toxicity
11.
Aquat Toxicol ; 212: 175-185, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31129413

ABSTRACT

Estuaries of the northern Gulf of Mexico are dynamic environments, with fluctuations in salinity and dissolved oxygen, including areas of seasonal hypoxia. Fish that reside and reproduce in these estuaries, including sheepshead minnow (Cyprinodon variegatus; SHM), were at significant risk of oil exposure following the Deepwater Horizon oil spill. It is poorly understood how differences in environmental conditions during oil exposure impact its toxicity. The present study investigated the effects of crude oil high-energy water accommodated fraction (HEWAF) on SHM reproduction in three environmental scenarios (normoxic, hypoxic, and hypoxic with low salinity) to determine if differences in salinity (brackish vs low salinity) and dissolved oxygen (normoxia vs hypoxia) could exacerbate the effects of HEWAF-derived polycyclic aromatic hydrocarbons (PAHs). We observed that HEWAF exposure significantly increased liver somatic index of SHM compared to control, but this effect was not exacerbated by hypoxia or low salinity. HEWAF exposure also significantly decreased egg production and egg fertilization rate, but only in the hypoxic and hypoxic with low salinity scenarios. A significant correlation existed between body burdens of PAHs and reproductive endpoints, providing substantial evidence that oil exposure reduced reproductive capacity in SHM, across a range of environmental conditions. These data suggest that oil spill risk assessments that fail to consider other environmental stressors (i.e. hypoxia and salinity) may be underestimating risk.


Subject(s)
Hypoxia/pathology , Killifishes/physiology , Petroleum Pollution , Petroleum/toxicity , Reproduction/drug effects , Salinity , Animals , Gulf of Mexico , Liver/drug effects , Polycyclic Aromatic Hydrocarbons/toxicity , Water Pollutants, Chemical/toxicity
12.
Environ Toxicol Chem ; 38(3): 638-649, 2019 03.
Article in English | MEDLINE | ID: mdl-30556163

ABSTRACT

The Deepwater Horizon oil spill resulted in the release of over 640 million L of crude oil into the Gulf of Mexico, affecting over 2000 km of shoreline, including estuaries that serve as important habitats and nurseries for aquatic species. Cyprinodon variegatus (sheepshead minnow) are small-bodied fish that inhabit northern Gulf of Mexico estuaries, are easily adaptable to laboratory conditions, and are commonly used in toxicological assessment studies. The purpose of the present study was to determine the somatic, reproductive, and developmental effects of an environmentally relevant polycyclic aromatic hydrocarbon (PAH) mixture, the oil high-energy water accommodated fraction (HEWAF), on experimentally exposed sheepshead minnow (F0 ) as well as 2 generations of offspring (F1 and F2 ) without additional exposure. The F0 generation exposed to HEWAF had increased liver somatic indices, altered egg production, and decreased fertilization. Several developmental endpoints in the F1 were altered by F0 HEWAF exposure. As adults, low HEWAF-exposed F1 females demonstrated decreased weight and length. Both the F1 and F2 generations derived from high HEWAF-exposed F0 had deficits in prey capture compared to control F1 and F2 , respectively. Correlations between endpoints and tissue PAHs provide evidence that the physiological effects observed were associated with hydrocarbon exposure. These data demonstrate that PAHs were capable of causing physiological changes in exposed adult sheepshead minnow and transgenerational effects in unexposed offspring, both of which could have population-level consequences. Environ Toxicol Chem 2019;38:638-649. © 2018 SETAC.


Subject(s)
Polycyclic Aromatic Hydrocarbons/toxicity , Water Pollutants, Chemical/toxicity , Animals , Environmental Exposure , Female , Killifishes/anatomy & histology , Killifishes/growth & development , Killifishes/physiology , Liver/drug effects , Male , Petroleum/toxicity , Petroleum Pollution , Reproduction/drug effects
13.
Science ; 361(6409): 1373-1376, 2018 09 28.
Article in English | MEDLINE | ID: mdl-30262502

ABSTRACT

Killer whales (Orcinus orca) are among the most highly polychlorinated biphenyl (PCB)-contaminated mammals in the world, raising concern about the health consequences of current PCB exposures. Using an individual-based model framework and globally available data on PCB concentrations in killer whale tissues, we show that PCB-mediated effects on reproduction and immune function threaten the long-term viability of >50% of the world's killer whale populations. PCB-mediated effects over the coming 100 years predicted that killer whale populations near industrialized regions, and those feeding at high trophic levels regardless of location, are at high risk of population collapse. Despite a near-global ban of PCBs more than 30 years ago, the world's killer whales illustrate the troubling persistence of this chemical class.


Subject(s)
Endangered Species , Extinction, Biological , Polychlorinated Biphenyls/toxicity , Water Pollutants, Chemical/toxicity , Whale, Killer/physiology , Animals , Immunity/drug effects , Population , Reproduction/drug effects , Whale, Killer/immunology
14.
Vet Immunol Immunopathol ; 203: 57-59, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30243374

ABSTRACT

Veterinary medical examinations, including both physical examination and diagnostic tests, are important to monitor the health of both managed-care and wild marine mammals. However, limited species-specific reagents and assays are available that may contribute to a broader medical examination. This project evaluated if commercially available human and porcine antibodies and reagents would cross-react with manatee (Trichechus manatus) cytokines as the first step to validate a new diagnostic tool for manatees. Overall, as a result of limited cross-reactivity, human and porcine commercial reagents did not allow for the quantification of manatee cytokines. At this point, caution must be exercised when using human or porcine immunoassay reagents to quantify manatee cytokines if the reagents have not been fully validated. Future efforts will continue to explore and test the cross-reactivity of reagents to measure manatee cytokines as new species-specific and commercial reagents become available.


Subject(s)
Cytokines/blood , Indicators and Reagents/therapeutic use , Trichechus manatus/immunology , Animals , Cross Reactions/immunology , Cytokines/immunology , Enzyme-Linked Immunosorbent Assay/veterinary , Humans , Interleukins/blood , Interleukins/immunology , Leukocytes, Mononuclear/immunology , Polymerase Chain Reaction/veterinary , Swine , Trichechus manatus/blood
15.
Aquat Toxicol ; 203: 10-18, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30064050

ABSTRACT

Given their particle feeding behavior, sessile nature, and abundance in coastal zones, bivalves are at significant risk for exposure to oil and oil dispersant following environmental disasters like the Deepwater Horizon oil spill. However, the effects of oil combined with oil dispersants on the health of oysters are not well studied. Therefore, eastern oysters (Crassostrea virginica) were exposed in vivo to Corexit® 9500, crude oil (high-energy water accommodated fraction; HEWAF), and a Corexit®/oil mixture (chemically-enhanced water accommodated fraction; CEWAF) to evaluate potential toxic effects on immunological (phagocytosis and respiratory burst), physiological (feeding rate), and histological endpoints. Phagocytosis was significantly increased following CEWAF exposure only. Respiratory burst was significantly decreased following Corexit® exposure, but significantly increased following exposure to the highest concentration of CEWAF. Oyster feeding rates were significantly decreased following exposure to Corexit®, HEWAF, and CEWAF, and were most sensitive to CEWAF exposure. These modulations of important immunological and physiological functions could result in serious health outcomes for oysters, such as increased parasitism and decreased growth. Our experiments showed that subtle, sub-lethal effects occurred following acute in vivo exposure to Corexit®, HEWAF, and CEWAF, though oysters were not equally sensitive to the three components. Data from this study can be used for more accurate risk assessment concerning the impact of oil and Corexit® on the health of oysters.


Subject(s)
Crassostrea/drug effects , Lipids/toxicity , Petroleum/toxicity , Toxicity Tests , Animals , Chemical Fractionation , Crassostrea/immunology , Dioctyl Sulfosuccinic Acid/metabolism , Granulocytes/cytology , Granulocytes/drug effects , Larva/drug effects , Petroleum Pollution/analysis , Phagocytosis/drug effects , Polycyclic Aromatic Hydrocarbons/metabolism , Water/chemistry , Water Pollutants, Chemical/toxicity
16.
J Exp Biol ; 221(Pt 13)2018 07 09.
Article in English | MEDLINE | ID: mdl-29748216

ABSTRACT

Weddell and elephant seals are deep-diving mammals, which rely on lung collapse to limit nitrogen absorption and prevent decompression injury. Repeated collapse and re-expansion exposes the lungs to multiple stressors, including ischemia-reperfusion, alveolar shear stress and inflammation. There is no evidence, however, that diving damages pulmonary function in these species. To investigate potential protective strategies in deep-diving seals, we examined the inflammatory response of seal whole blood exposed to lipopolysaccharide (LPS), a potent endotoxin. Interleukin-6 (IL6) cytokine production elicited by LPS exposure was 50 to 500 times lower in blood of healthy northern elephant seals and Weddell seals compared with that of healthy human blood. In contrast to the ∼6× increased production of IL6 protein from LPS-exposed Weddell seal whole blood, isolated Weddell seal peripheral blood mononuclear cells, under standard cell culture conditions using medium supplemented with fetal bovine serum (FBS), produced a robust LPS response (∼300×). Induction of Il6 mRNA expression as well as production of IL6, IL8, IL10, KC-like and TNFα were reduced by substituting FBS with an equivalent amount of autologous seal serum. Weddell seal serum also attenuated the inflammatory response of RAW 267.4 mouse macrophage cells exposed to LPS. Cortisol level and the addition of serum lipids did not impact the cytokine response in cultured cells. These data suggest that seal serum possesses anti-inflammatory properties, which may protect deep divers from naturally occurring inflammatory challenges such as dive-induced hypoxia-reoxygenation and lung collapse.


Subject(s)
Anti-Inflammatory Agents/immunology , Cytokines/metabolism , Immunity, Innate , Lipopolysaccharides/pharmacology , Seals, Earless/immunology , Serum/immunology , Animals , Anti-Inflammatory Agents/blood , Diving/physiology , Female , Leukocytes/immunology , Male , Seals, Earless/blood , Species Specificity
17.
Vet Immunol Immunopathol ; 195: 72-75, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29249321

ABSTRACT

Natural killer (NK) cells are a vital part of the rapid and non-specific immune defense against invading pathogens and tumor cells. This study evaluated NK cell-like activity by flow cytometry for the first time in three ecologically and culturally important Arctic mammal species: polar bear (Ursus maritimus), muskox (Ovibos moschatus) and reindeer (Rangifer tarandus). NK cell-like activity for all three species was most effective against the mouse lymphoma cell line YAC-1, compared to the human leukemia cell line K562; NK cell response displayed the characteristic increase in cytotoxic activity when the effector:target cell ratio increased. Comparing NK activity between fresh and cryopreserved mouse lymphocytes revealed little to no difference in function, highlighting the applicability of cryopreserving cells in field studies. The evaluation of this important innate immune function in Arctic mammals can contribute to future population health assessments, especially as pollution-induced suppression of immune function may increase infectious disease susceptibility.


Subject(s)
Killer Cells, Natural/immunology , Reindeer/immunology , Ruminants/immunology , Ursidae/immunology , Animals , Arctic Regions , Cryopreservation/veterinary , Female , Killer Cells, Natural/physiology , Mice/immunology , Neutrophils/immunology , Neutrophils/physiology
18.
Environ Sci Technol ; 51(19): 11431-11439, 2017 Oct 03.
Article in English | MEDLINE | ID: mdl-28876915

ABSTRACT

Most controlled toxicity studies use single chemical exposures that do not represent the real world situation of complex mixtures of known and unknown natural and anthropogenic substances. In the present study, complex contaminant cocktails derived from the blubber of polar bears (PB; Ursus maritimus) and killer whales (KW; Orcinus orca) were used for in vitro concentration-response experiments with PB, cetacean and seal spp. immune cells to evaluate the effect of realistic contaminant mixtures on various immune functions. Cytotoxic effects of the PB cocktail occurred at lower concentrations than the KW cocktail (1 vs 16 µg/mL), likely due to differences in contaminant profiles in the mixtures derived from the adipose of each species. Similarly, significant reduction of lymphocyte proliferation occurred at much lower exposures in the PB cocktail (EC50: 0.94 vs 6.06 µg/mL; P < 0.01), whereas the KW cocktail caused a much faster decline in proliferation (slope: 2.9 vs 1.7; P = 0.04). Only the KW cocktail modulated natural killer (NK) cell activity and neutrophil and monocyte phagocytosis in a concentration- and species-dependent manner. No clear sensitivity differences emerged when comparing cetaceans, seals and PB. Our results showing lower effect levels for complex mixtures relative to single compounds suggest that previous risk assessments underestimate the effects of real world contaminant exposure on immunity. Our results using blubber-derived contaminant cocktails add realism to in vitro exposure experiments and confirm the immunotoxic risk marine mammals face from exposure to complex mixtures of environmental contaminants.


Subject(s)
Adipose Tissue/chemistry , Caniformia/immunology , Environmental Pollutants , Ursidae/immunology , Whale, Killer/immunology , Animals , Seals, Earless
19.
J Toxicol Environ Health A ; 80(10-12): 556-561, 2017.
Article in English | MEDLINE | ID: mdl-28841368

ABSTRACT

Threatened loggerhead sea turtles (Caretta caretta) face numerous environmental challenges, including exposure to anthropogenic chemicals such as polychlorinated biphenyls (PCBs). Despite being banned by the USA in the 1970s, PCBs persist in the environment and produce immunotoxic effects in a wide range of marine vertebrate species. This is of particular concern, as the modulation of the immune system may enhance the susceptibility to a variety of pathogens. Blood samples were collected from 19 immature, captive-reared loggerhead sea turtles. Functional immune assays phagocytosis and natural killer (NK) cell activity were used to quantify the direct effects of PCB congeners 105, 138, and 169 on innate immune functions upon in vitro exposure of sea turtle cells to increasing concentrations (control (0), 0.5, 1, 2.5, 5, 10, 15, or 20 ppm) of each PCB. PCB 105 significantly elevated eosinophil phagocytosis at 10 and 15 ppm and PCB 138 at 15 ppm compared to unexposed (0 ppm). The effects of PCB 169 on phagocytosis were not evaluated. PCB 138 and 105 significantly decreased NK cell activity at 15 and 20 ppm, compared to unexposed (0 ppm) controls. PCB 169 did not markedly modulate NK activity. This constitutes the first study to investigate the in vitro effects of these three PCBs on sea turtle innate immune functions. These results add to our understanding of PCB-induced immunotoxicity in sea turtles and may provide a framework for establishing the relationships between chemical levels and turtle immunity.


Subject(s)
Environmental Exposure , Killer Cells, Natural/drug effects , Phagocytosis/drug effects , Polychlorinated Biphenyls/toxicity , Turtles/physiology , Water Pollutants, Chemical/toxicity , Animals
20.
Environ Res ; 156: 128-131, 2017 07.
Article in English | MEDLINE | ID: mdl-28342348

ABSTRACT

Blood was sampled from nine free-ranging white whales (beluga whale, Delphinapterus leucas) from Svalbard, Norway during the summers of 2013 and 2014. Total concentrations of eleven thyroid hormones and metabolites were measured in serum using a novel liquid chromatography tandem mass spectrometry analytical method. Measurements of these compounds in plasma gave the same results as in serum. The three hormones found in highest concentrations were 3,3',5-triiodothyronine (T3), 3,3',5'-triiodothyronine (rT3) and thyroxine (T4). Traces of associated metabolites were also found.


Subject(s)
Beluga Whale/metabolism , Blood Chemical Analysis/methods , Chromatography, Liquid , Mass Spectrometry , Thyroid Hormones/blood , Animals , Female , Male , Plasma/chemistry , Serum/chemistry , Svalbard , Thyroid Hormones/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...