Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
2.
Mol Oncol ; 18(2): 291-304, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37753732

ABSTRACT

Intravesical therapy (IVT) is the standard of care to decrease risk of recurrence and progression for high-grade nonmuscle-invasive bladder cancer. However, post-IVT recurrence remains common and the ability to risk-stratify patients before or after IVT is limited. In this prospectively designed and accrued cohort study, we examine the utility of urinary comprehensive genomic profiling (uCGP) for predicting recurrence risk following transurethral resection of bladder tumor (TURBT) and evaluating longitudinal IVT response. Urine was collected before and after IVT instillation and uCGP testing was done using the UroAmp™ platform. Baseline uCGP following TURBT identified patients with high (61%) and low (39%) recurrence risk. At 24 months, recurrence-free survival (RFS) was 100% for low-risk and 45% for high-risk patients with a hazard ratio (HR) of 9.3. Longitudinal uCGP classified patients as minimal residual disease (MRD) Negative, IVT Responder, or IVT Refractory with 24-month RFS of 100%, 50%, and 32%, respectively. Compared with MRD Negative patients, IVT Refractory patients had a HR of 10.5. Collectively, uCGP enables noninvasive risk assessment of patients following TURBT and induction IVT. uCGP could inform surveillance cystoscopy schedules and identify high-risk patients in need of additional therapy.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Carcinoma, Transitional Cell/drug therapy , Carcinoma, Transitional Cell/pathology , Cohort Studies , Administration, Intravesical , Genomics , Neoplasm Recurrence, Local/epidemiology , Neoplasm Invasiveness/pathology , Retrospective Studies
3.
Clin Cancer Res ; 29(18): 3668-3680, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37439796

ABSTRACT

PURPOSE: Urinary comprehensive genomic profiling (uCGP) uses next-generation sequencing to identify mutations associated with urothelial carcinoma and has the potential to improve patient outcomes by noninvasively diagnosing disease, predicting grade and stage, and estimating recurrence risk. EXPERIMENTAL DESIGN: This is a multicenter case-control study using banked urine specimens collected from patients undergoing initial diagnosis/hematuria workup or urothelial carcinoma surveillance. A total of 581 samples were analyzed by uCGP: 333 for disease classification and grading algorithm development, and 248 for blinded validation. uCGP testing was done using the UroAmp platform, which identifies five classes of mutation: single-nucleotide variants, copy-number variants, small insertion-deletions, copy-neutral loss of heterozygosity, and aneuploidy. UroAmp algorithms predicting urothelial carcinoma tumor presence, grade, and recurrence risk were compared with cytology, cystoscopy, and pathology. RESULTS: uCGP algorithms had a validation sensitivity/specificity of 95%/90% for initial cancer diagnosis in patients with hematuria and demonstrated a negative predictive value (NPV) of 99%. A positive diagnostic likelihood ratio (DLR) of 9.2 and a negative DLR of 0.05 demonstrate the ability to risk-stratify patients presenting with hematuria. In surveillance patients, binary urothelial carcinoma classification demonstrated an NPV of 91%. uCGP recurrence-risk prediction significantly prognosticated future recurrence (hazard ratio, 6.2), whereas clinical risk factors did not. uCGP demonstrated positive predictive value (PPV) comparable with cytology (45% vs. 42%) with much higher sensitivity (79% vs. 25%). Finally, molecular grade predictions had a PPV of 88% and a specificity of 95%. CONCLUSIONS: uCGP enables noninvasive, accurate urothelial carcinoma diagnosis and risk stratification in both hematuria and urothelial carcinoma surveillance patients.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Hematuria/diagnosis , Hematuria/genetics , Case-Control Studies , Biomarkers, Tumor/genetics , Sensitivity and Specificity , Genomics
4.
J Clin Med ; 11(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36233691

ABSTRACT

The clinical standard of care for urothelial carcinoma (UC) relies on invasive procedures with suboptimal performance. To enhance UC treatment, we developed a urinary comprehensive genomic profiling (uCGP) test, UroAmplitude, that measures mutations from tumor DNA present in urine. In this study, we performed a blinded, prospective validation of technical sensitivity and positive predictive value (PPV) using reference standards, and found at 1% allele frequency, mutation detection performs at 97.4% sensitivity and 80.4% PPV. We then prospectively compared the mutation profiles of urine-extracted DNA to those of matched tumor tissue to validate clinical performance. Here, we found tumor single-nucleotide variants were observed in the urine with a median concordance of 91.7% and uCGP revealed distinct patterns of genomic lesions enriched in low- and high-grade disease. Finally, we retrospectively explored longitudinal case studies to quantify residual disease following bladder-sparing treatments, and found uCGP detected residual disease in patients receiving bladder-sparing treatment and predicted recurrence and disease progression. These findings demonstrate the potential of the UroAmplitude platform to reliably identify and track mutations associated with UC at each stage of disease: diagnosis, treatment, and surveillance. Multiple case studies demonstrate utility for patient risk classification to guide both surgical and therapeutic interventions.

5.
J Proteomics ; 176: 13-23, 2018 03 30.
Article in English | MEDLINE | ID: mdl-29331515

ABSTRACT

To build a catalog of peptides presented by breast cancer cells, we undertook systematic MHC class I immunoprecipitation followed by elution of MHC class I-loaded peptides in breast cancer cells. We determined the sequence of 3196 MHC class I ligands representing 1921 proteins from a panel of 20 breast cancer cell lines. After removing duplicate peptides, i.e., the same peptide eluted from more than one cell line, the total number of unique peptides was 2740. Of the unique peptides eluted, more than 1750 had been previously identified, and of these, sixteen have been shown to be immunogenic. Importantly, half of these immunogenic peptides were shared between different breast cancer cell lines. MHC class I binding probability was used to plot the distribution of the eluted peptides in accordance with the binding score for each breast cancer cell line. We also determined that the tested breast cancer cells presented 89 mutation-containing peptides and peptides derived from aberrantly translated genes, 7 of which were shared between four or two different cell lines. Overall, the high throughput identification of MHC class I-loaded peptides is an effective strategy for systematic characterization of cancer peptides, and could be employed for design of multi-peptide anticancer vaccines. SIGNIFICANCE: By employing proteomic analyses of eluted peptides from breast cancer cells, the current study has built an initial HLA-I-typed antigen collection for breast cancer research. It was also determined that immunogenic epitopes can be identified using established cell lines and that shared immunogenic peptides can be found in different cancer types such as breast cancer and leukemia. Importantly, out of 3196 eluted peptides that included duplicate peptides in different cells 89 peptides either contained mutation in their sequence or were derived from aberrant translation suggesting that mutation-containing epitopes are on the order of 2-3% in breast cancer cells. Finally, our results suggest that interfering with MHC class I function is one of the mechanisms of how tumor cells escape immune system attack.


Subject(s)
Breast Neoplasms/immunology , Histocompatibility Antigens Class I/analysis , Amino Acid Sequence , Antigen Presentation , Antigens, Neoplasm , Breast Neoplasms/pathology , Cell Line, Tumor , Epitopes/genetics , HLA Antigens , High-Throughput Screening Assays , Humans , Ligands , Mutation , Proteomics/methods
6.
Cell Mol Gastroenterol Hepatol ; 3(3): 389-409, 2017 May.
Article in English | MEDLINE | ID: mdl-28462380

ABSTRACT

BACKGROUND & AIMS: Intestinal epithelial homeostasis is maintained by active-cycling and slow-cycling stem cells confined within an instructive crypt-based niche. Exquisite regulating of these stem cell populations along the proliferation-to-differentiation axis maintains a homeostatic balance to prevent hyperproliferation and cancer. Although recent studies focus on how secreted ligands from mesenchymal and epithelial populations regulate intestinal stem cells (ISCs), it remains unclear what role cell adhesion plays in shaping the regulatory niche. Previously we have shown that the cell adhesion molecule and cancer stem cell marker, CD166/ALCAM (activated leukocyte cell adhesion molecule), is highly expressed by both active-cycling Lgr5+ ISCs and adjacent Paneth cells within the crypt base, supporting the hypothesis that CD166 functions to mediate ISC maintenance and signal coordination. METHODS: Here we tested this hypothesis by analyzing a CD166-/- mouse combined with immunohistochemical, flow cytometry, gene expression, and enteroid culture. RESULTS: We found that animals lacking CD166 expression harbored fewer active-cycling Lgr5+ ISCs. Homeostasis was maintained by expansion of the transit-amplifying compartment and not by slow-cycling Bmi1+ ISC stimulation. Loss of active-cycling ISCs was coupled with deregulated Paneth cell homeostasis, manifested as increased numbers of immature Paneth progenitors due to decreased terminal differentiation, linked to defective Wnt signaling. CD166-/- Paneth cells expressed reduced Wnt3 ligand expression and depleted nuclear ß-catenin. CONCLUSIONS: These data support a function for CD166 as an important cell adhesion molecule that shapes the signaling microenvironment by mediating ISC-niche cell interactions. Furthermore, loss of CD166 expression results in decreased ISC and Paneth cell homeostasis and an altered Wnt microenvironment.

7.
BMC Genomics ; 17: 38, 2016 Jan 08.
Article in English | MEDLINE | ID: mdl-26747525

ABSTRACT

BACKGROUND: Head and neck cancer is morbid with a poor prognosis that has not significantly improved in the past several decades. The purpose of this study was to identify biological pathways underlying progressive head and neck cancer to inform prognostic and adjuvant strategies. We identified 235 head and neck cancer patients in The Cancer Genome Atlas (TCGA) with sufficient clinical annotation regarding therapeutic treatment and disease progression to identify progressors and non-progressors. We compared primary tumor gene expression and mutational status between these two groups. RESULTS: 105 genes were differentially expressed between progressors and nonprogressors (FDR < 0.05). Pathway analyses revealed deregulation (FDR < 0.05) of multiple pathways related to integrin signaling as well as IL-10 signaling. A number of genes were uniquely mutated in the progressor cohort including increased frequency of truncating mutations in CTCF (P = 0.007). An 11-gene signature derived from a combination of unique mutations and differential expression was identified (PAGE4, SMTNL1, VTN, CA5A, C1orf43, KRTAP19-1, LEP, HRH4, PAGE5, SEZ6L, CREB3). This signature was associated with decreased overall survival (Logrank Test; P = 0.03443). Cox modeling of both key clinical features and the signature was significant (P = 0.032) with the greatest prognostic improvement seen in the model based on nodal extracapsular spread and alcohol use alone (P = 0.004). CONCLUSIONS: Molecular analyses of head and neck cancer tumors that progressed despite treatment, identified IL-10 and integrin pathways to be strongly associated with cancer progression. In addition, we identified an 11-gene signature with implications for patient prognostication. Mutational analysis highlighted a potential role for CTCF, a crucial regulator of long-range chromatin interactions, in head and neck cancer progression.


Subject(s)
Head and Neck Neoplasms/genetics , Integrins/genetics , Interleukin-10/genetics , Neoplasm Proteins/biosynthesis , Repressor Proteins/genetics , Adult , Aged , Aged, 80 and over , CCCTC-Binding Factor , Female , Gene Expression Regulation, Neoplastic , Genome, Human , Head and Neck Neoplasms/pathology , High-Throughput Nucleotide Sequencing , Humans , Integrins/metabolism , Interleukin-10/metabolism , Male , Middle Aged , Mutation , Neoplasm Proteins/genetics , Prognosis , Repressor Proteins/metabolism , Signal Transduction
8.
PLoS One ; 10(6): e0129566, 2015.
Article in English | MEDLINE | ID: mdl-26075913

ABSTRACT

A high throughput screen for compounds that induce TRAIL-mediated apoptosis identified ML100 as an active chemical probe, which potentiated TRAIL activity in prostate carcinoma PPC-1 and melanoma MDA-MB-435 cells. Follow-up in silico modeling and profiling in cell-based assays allowed us to identify NSC130362, pharmacophore analog of ML100 that induced 65-95% cytotoxicity in cancer cells and did not affect the viability of human primary hepatocytes. In agreement with the activation of the apoptotic pathway, both ML100 and NSC130362 synergistically with TRAIL induced caspase-3/7 activity in MDA-MB-435 cells. Subsequent affinity chromatography and inhibition studies convincingly demonstrated that glutathione reductase (GSR), a key component of the oxidative stress response, is a target of NSC130362. In accordance with the role of GSR in the TRAIL pathway, GSR gene silencing potentiated TRAIL activity in MDA-MB-435 cells but not in human hepatocytes. Inhibition of GSR activity resulted in the induction of oxidative stress, as was evidenced by an increase in intracellular reactive oxygen species (ROS) and peroxidation of mitochondrial membrane after NSC130362 treatment in MDA-MB-435 cells but not in human hepatocytes. The antioxidant reduced glutathione (GSH) fully protected MDA-MB-435 cells from cell lysis induced by NSC130362 and TRAIL, thereby further confirming the interplay between GSR and TRAIL. As a consequence of activation of oxidative stress, combined treatment of different oxidative stress inducers and NSC130362 promoted cell death in a variety of cancer cells but not in hepatocytes in cell-based assays and in in vivo, in a mouse tumor xenograft model.


Subject(s)
Apoptosis/drug effects , Glutathione Reductase/metabolism , High-Throughput Screening Assays , Oxidative Stress , TNF-Related Apoptosis-Inducing Ligand/metabolism , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Dose-Response Relationship, Drug , Doxorubicin/pharmacology , Drug Discovery , Glutathione/metabolism , Glutathione Reductase/antagonists & inhibitors , Humans , Mice , Reactive Oxygen Species , Small Molecule Libraries
9.
Cancers (Basel) ; 3(1): 319-39, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21318087

ABSTRACT

Colorectal cancer is the third-leading cause of cancer related mortality in the United States. The intricate molecular mechanisms involved in the regenerative process of the normal intestine and the identity of putative somatic intestinal stem cells have become clear. In parallel with this, experiment evidence has emerged supporting the century old hypothesis that solid tumor initiation, progression, chemoresistance and recurrence is the result of a small population of cancer cells with self-renewal and pluripotency capabilities. These "cancer stem cells" (CSCs) present a unique opportunity to better understand the biology of solid tumors in general, as well as targets for future therapeutics. In this review, we will summarize the current understanding of intestinal stem cell biology and translate it to colorectal CSCs to provide a basis for understanding chemoresistance, cancer recurrence and metastasis. A more complete understanding of the biology of colorectal CSCs will translate into the development of better chemotherapeutic and biological agents for the treatment of colorectal cancer.

10.
Gastroenterology ; 139(6): 2072-2082.e5, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20826154

ABSTRACT

BACKGROUND & AIMS: CD166 (also called activated leukocyte cell adhesion molecule [ALCAM]) is a marker of colorectal cancer (CRC) stem cells; it is expressed by aggressive tumors. Although the presence of CD166 at the tumor cell surface has been correlated with shortened survival, little is known about its function and expression in normal intestinal epithelia. METHODS: We characterized the expression pattern of CD166 in normal intestinal tissue samples from humans and mice using immunohistochemisty, flow cytometry, and quantitative reverse-transcriptase polymerase chain reaction. Human and mouse intestinal tumors were also analyzed. RESULTS: CD166 was expressed on the surface of epithelial cells within the stem cell niche and along the length of the intestine; expression was conserved across species. In the small intestine, CD166 was observed on crypt-based Paneth cells and intervening crypt-based columnar cells (putative stem cells). A subset of CD166-positive, crypt-based columnar cells coexpressed the stem cell markers Lgr5, Musashi-1, or Dcamkl-1. CD166 was located in the cytoplasm and at the surface of cells within human CRC tumors. CD166-positive cells were also detected in benign adenomas in mice; rare cells coexpressed CD166 and CD44 or epithelial-specific antigen. CONCLUSIONS: CD166 is highly expressed within the endogenous intestinal stem cell niche. CD166-positive cells appear at multiple stages of intestinal carcinoma progression, including benign and metastatic tumors. Further studies should investigate the function of CD166 in stem cells and the stem cell niche, which might have implications for normal intestinal homeostasis. CD166 has potential as a therapeutic target for CRC.


Subject(s)
Adenocarcinoma/metabolism , Antigens, CD/metabolism , Cell Adhesion Molecules, Neuronal/metabolism , Colorectal Neoplasms/metabolism , Epithelial Cells/metabolism , Fetal Proteins/metabolism , Intestinal Mucosa/metabolism , Stem Cells/metabolism , Adenocarcinoma/secondary , Animals , Biomarkers, Tumor/metabolism , Biopsy , Colon/cytology , Colon/metabolism , Colorectal Neoplasms/pathology , Epithelial Cells/cytology , Homeostasis/physiology , Humans , Intestinal Mucosa/cytology , Intestine, Small/cytology , Intestine, Small/metabolism , Liver Neoplasms/metabolism , Liver Neoplasms/secondary , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Stem Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...