Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Dent ; 43(12): 1539-46, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26404407

ABSTRACT

OBJECTIVES: Biofilm acids contribute to secondary caries which is a reason for restoration failure. Previous studies synthesized nanoparticles of amorphous calcium phosphate (NACP) and dimethylaminohexadecyl methacrylate (DMAHDM). The objectives of this study were to develop DMAHMD-NACP nanocomposite for double benefits of antibacterial and remineralization capabilities, and investigate the DMAHMD mass fraction effects on fracture toughness and biofilm response of NACP nanocomposite for the first time. METHODS: DMAHDM was incorporated into NACP nanocomposite at mass fractions of 0% (control), 0.75%, 1.5%, 2.25% and 3%. A single edge V-notched beam method was used to measure fracture toughness K(IC). A dental plaque microcosm biofilm model using human saliva as inoculum was used to measure the antibacterial properties of composites. RESULTS: K(IC) was about 1 MPa×m(1/2) for all composite (mean±sd; n=6). Adding DMAHDM from 0% to 3% did not affect K(IC) (p>0.1). Lactic acid production by biofilms on composite containing 3% DMAHDM was reduced to less than 1% of that on composite control. Metabolic activity of adherent biofilms on composite containing 3% DMAHDM was reduced to 4% of that on composite control. Biofilm colony-forming unit (CFU) counts were reduced by three orders of magnitude on NACP nanocomposite containing 3% DMAHDM. CONCLUSIONS: DMAHDM-NACP nanocomposite had good fracture resistance, strong antibacterial potency, and NACP for remineralization (shown in previous studies). The DMAHDM-NACP nanocomposite may be promising for caries-inhibiting dental restorations, and the method of using double agents (DMAHDM and NACP) may have a wide applicability to other dental materials including bonding agents and cements.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Methacrylates/chemistry , Methacrylates/pharmacology , Nanocomposites/chemistry , Tooth Remineralization/methods , Bacteria/drug effects , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Composite Resins/chemistry , Composite Resins/pharmacology , Dental Caries/prevention & control , Dental Materials/pharmacology , Dental Plaque/drug therapy , Dental Plaque/microbiology , Humans , Lactic Acid/metabolism , Microbial Viability/drug effects , Nanoparticles/chemistry , Saliva/microbiology , Streptococcus mutans/drug effects , Streptococcus mutans/physiology
2.
Dent Mater ; 28(6): 642-52, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22429937

ABSTRACT

OBJECTIVES: Fluoride (F) releasing dental restoratives are promising to promote remineralization and combat caries. The objectives of this study were to develop nanocomposite containing calcium fluoride nanoparticles (nCaF(2)), and to investigate the long-term mechanical durability including wear, thermal-cycling and long-term water-aging behavior. METHODS: Two types of fillers were used: nCaF(2) with a diameter of 53 nm, and glass particles of 1.4 µm. Four composites were fabricated with fillers of: (1) 0% nCaF(2)+65% glass; (2) 10% nCaF(2)+55% glass; (3) 20% nCaF(2)+45% glass; (4) 30% nCaF(2)+35% glass. Three commercial materials were also tested. Specimens were subjected to thermal-cycling between 5°C and 60°C for 10(5) cycles, three-body wear for 4×10(5) cycles, and water-aging for 2 years. RESULTS: After thermal-cycling, the nCaF(2) nanocomposites had flexural strengths in the range of 100-150 MPa, five times higher than the 20-30 MPa for resin-modified glass ionomer (RMGI). The wear scar depth showed an increasing trend with increasing nCaF(2) filler level. Wear of nCaF(2) nanocomposites was within the range of wear for commercial controls. Water-aging decreased the strength of all materials. At 2 years, flexural strength was 94 MPa for nanocomposite with 10% nCaF(2), 60 MPa with 20% nCaF(2), and 48 MPa with 30% nCaF(2). They are 3-6 fold higher than the 15 MPa for RMGI (p<0.05). SEM revealed air bubbles and cracks in a RMGI, while composite control and nCaF(2) nanocomposites appeared dense and solid. SIGNIFICANCE: Combining nCaF(2) with glass particles yielded nanocomposites with long-term mechanical properties that were comparable to those of a commercial composite with little F release, and much better than those of RMGI controls. These strong long-term properties, together with their F release being comparable to RMGI as previously reported, indicate that the nCaF(2) nanocomposites are promising for load-bearing and caries-inhibiting restorations.


Subject(s)
Acrylic Resins/chemistry , Calcium Fluoride/chemistry , Composite Resins/chemistry , Nanocomposites/chemistry , Nanoparticles , Silicon Dioxide/chemistry , Dental Stress Analysis , Materials Testing , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL