Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(18): e2316867121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38657051

ABSTRACT

The term defect tolerance (DT) is used often to rationalize the exceptional optoelectronic properties of halide perovskites (HaPs) and their devices. Even though DT lacked direct experimental evidence, it became a "fact" in the field. DT in semiconductors implies that structural defects do not translate to electrical and optical effects (e.g., due to charge trapping), associated with such defects. We present pioneering direct experimental evidence for DT in Pb-HaPs by comparing the structural quality of 2-dimensional (2D), 2D-3D, and 3D Pb-iodide HaP crystals with their optoelectronic characteristics using high-sensitivity methods. Importantly, we get information from the materials' bulk because we sample at least a few hundred nanometers, up to several micrometers, from the sample's surface, which allows for assessing intrinsic bulk (and not only surface-) properties of HaPs. The results point to DT in 3D, 2D-3D, and 2D Pb-HaPs. Overall, our data provide an experimental basis to rationalize DT in Pb-HaPs. These experiments and findings will help the search for and design of materials with real DT.

2.
Small Methods ; 7(11): e2300423, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37596059

ABSTRACT

Solvated electrons are highly reductive chemical species whose chemical properties remain largely unknown. Diamond materials are proposed as a promising emitter of solvated electrons and visible light excitation would enable solar-driven CO2 or N2 reductions reactions in aqueous medium. But sub-bandgap excitation remains challenging. In this work, the role of surface states on diamond materials for charge separation and emission in both gaseous and aqueous environments from deep UV to visible light excitation is elucidated. Four different X-ray and UV-vis spectroscopy methods are applied to diamond materials with different surface termination, doping and crystallinity. Surface states are found to dominate sub-bandgap charge transfer. However, the surface charge separation is drastically reduced for boron-doped diamond due to a very high density of bulk defects. In a gaseous atmosphere, the oxidized diamond surface maintains a negative electron affinity, allowing charge emission, due to remaining hydrogenated and hydroxylated groups. In an aqueous electrolyte, a photocurrent for illumination down to 3.5 eV is observed for boron-doped nanostructured diamond, independent of the surface termination. This study opens new perspectives on photo-induced interfacial charge transfer processes from metal-free semiconductors such as diamonds.

3.
Science ; 381(6653): 63-69, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37410849

ABSTRACT

Improved stability and efficiency of two-terminal monolithic perovskite-silicon tandem solar cells will require reductions in recombination losses. By combining a triple-halide perovskite (1.68 electron volt bandgap) with a piperazinium iodide interfacial modification, we improved the band alignment, reduced nonradiative recombination losses, and enhanced charge extraction at the electron-selective contact. Solar cells showed open-circuit voltages of up to 1.28 volts in p-i-n single junctions and 2.00 volts in perovskite-silicon tandem solar cells. The tandem cells achieve certified power conversion efficiencies of up to 32.5%.

4.
iScience ; 26(4): 106365, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37009218

ABSTRACT

Halide perovskite-based photon upconverters utilize perovskite thin films to sensitize triplet exciton formation in a small-molecule layer, driving triplet-triplet annihilation upconversion. Despite having excellent carrier mobility, these systems suffer from inefficient triplet formation at the perovskite/annihilator interface. We studied triplet formation in formamidinium-methylammonium lead iodide/rubrene bilayers using photoluminescence and surface photovoltage methods. By studying systems constructed on glass as well as hole-selective substrates, comprising self-assembled layers of the carbazole derivative 2PACz ([2-(9H-carbazol-9-yl)ethyl]phosphonic acid) on indium-doped tin oxide, we saw how changes in the carrier dynamics induced by the hole-selective substrate perturbed triplet formation at the perovskite/rubrene interface. We propose that an internal electric field, caused by hole transfer at the perovskite/rubrene interface, strongly affects triplet exciton formation, accelerating exciton-forming electron-hole encounters at the interface but also limiting the hole density in rubrene at high excitation densities. Controlling this field is a promising path to improving triplet formation in perovskite/annihilator upconverters.

5.
Nat Commun ; 13(1): 4960, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36002464

ABSTRACT

I-V-VI2 ternary chalcogenides are gaining attention as earth-abundant, nontoxic, and air-stable absorbers for photovoltaic applications. However, the semiconductors explored thus far have slowly-rising absorption onsets, and their charge-carrier transport is not well understood yet. Herein, we investigate cation-disordered NaBiS2 nanocrystals, which have a steep absorption onset, with absorption coefficients reaching >105 cm-1 just above its pseudo-direct bandgap of 1.4 eV. Surprisingly, we also observe an ultrafast (picosecond-time scale) photoconductivity decay and long-lived charge-carrier population persisting for over one microsecond in NaBiS2 nanocrystals. These unusual features arise because of the localised, non-bonding S p character of the upper valence band, which leads to a high density of electronic states at the band edges, ultrafast localisation of spatially-separated electrons and holes, as well as the slow decay of trapped holes. This work reveals the critical role of cation disorder in these systems on both absorption characteristics and charge-carrier kinetics.

6.
ACS Appl Mater Interfaces ; 13(36): 43540-43553, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34472345

ABSTRACT

Using advanced near-UV photoemission spectroscopy (PES) in constant final state mode (CFSYS) with a very high dynamic range, we investigate the triple-cation lead halide perovskite Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 and gain detailed insights into the density of occupied states (DOS) in the valence band and band gap. A valence band model is established which includes the parabolic valence band edge and an exponentially decaying band tail in a single equation. This allows us to precisely determine two valence band maxima (VBM) at different k-vectors in the angle-integrated spectra, where the highest one, resulting from the VBM at the R-point in the Brillouin zone, is found between -1.50 to -1.37 eV relative to the Fermi energy EF. We investigate quantitatively the formation of defect states in the band gap up to EF upon decomposition of the perovskites during sample transfer, storage, and measurements: during near-UV-based PES, the density of defect states saturates at a value that is around 4 orders of magnitude below the density of states at the valence band edge. However, even short air exposure, or 3 h of X-ray illumination, increased their density by almost a factor of six and ∼40, respectively. Upon prolonged storage in vacuum, the formation of a distinct defect peak is observed. Thus, near-UV CFSYS with modeling as shown here is demonstrated as a powerful tool to characterize the valence band and quantify defect states in lead halide perovskites.

7.
ACS Appl Mater Interfaces ; 13(11): 13022-13033, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33721995

ABSTRACT

Through the optimization of the perovskite precursor composition and interfaces to selective contacts, we achieved a p-i-n-type perovskite solar cell (PSC) with a 22.3% power conversion efficiency (PCE). This is a new performance record for a PSC with an absorber bandgap of 1.63 eV. We demonstrate that the high device performance originates from a synergy between (1) an improved perovskite absorber quality when introducing formamidinium chloride (FACl) as an additive in the "triple cation" Cs0.05FA0.79MA0.16PbBr0.51I2.49 (Cs-MAFA) perovskite precursor ink, (2) an increased open-circuit voltage, VOC, due to reduced recombination losses when using a lithium fluoride (LiF) interfacial buffer layer, and (3) high-quality hole-selective contacts with a self-assembled monolayer (SAM) of [2-(9H-carbazol-9-yl)ethyl]phosphonic acid (2PACz) on ITO electrodes. While all devices exhibit a high performance after fabrication, as determined from current-density voltage, J-V, measurements, substantial differences in device performance become apparent when considering longer-term stability data. A reduced long-term stability of devices with the introduction of a LiF interlayer is compensated for by using FACl as an additive in the metal-halide perovskite thin-film deposition. Optimized devices maintained about 80% of the initial average PCE during maximum power point (MPP) tracking for >700 h. We scaled the optimized device architecture to larger areas and achieved fully laser patterned series-interconnected mini-modules with a PCE of 19.4% for a 2.2 cm2 active area. A robust device architecture and reproducible deposition methods are fundamental for high performance and stable large-area single junction and tandem modules based on PSCs.

8.
ACS Appl Mater Interfaces ; 12(12): 13959-13970, 2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32096970

ABSTRACT

We assess a tandem photoelectrochemical cell consisting of a W:BiVO4 photoanode top absorber and a CuBi2O4 photocathode bottom absorber for overall solar water splitting. We show that the W:BiVO4 photoanode oxidizes water and produces oxygen at potentials ≥0.7 V vs RHE when CoPi is added as a cocatalyst. However, the CuBi2O4 photocathode does not produce a detectable amount of hydrogen from water reduction even when Pt or RuOx is added as a cocatalyst because the photocurrent primarily goes toward photocorrosion of CuBi2O4 rather than proton reduction. Protecting the CuBi2O4 photocathode with a CdS/TiO2 heterojunction and adding RuOx as a cocatalyst prevents photocorrosion and allows for photoelectrochemical production of hydrogen at potentials ≤0.3 V vs RHE. A tandem photoelectrochemical cell composed of a W:BiVO4/CoPi photoanode and a CuBi2O4/CdS/TiO2/RuOx photocathode produces hydrogen which can be detected under illumination at an applied bias of ≥0.4 V. Since the valence band of BiVO4 and conduction band of CuBi2O4 are adequately positioned to oxidize water and reduce protons, we hypothesize that the applied bias is required to overcome the relatively low photovoltages of the photoelectrodes, that is, the relatively low quasi-Fermi level splitting within BiVO4 and CuBi2O4. This work is the first experimental demonstration of hydrogen production from a BiVO4-CuBi2O4-based tandem cell and it provides important insights into the significance of photovoltage in tandem devices for overall water splitting, especially for cells containing CuBi2O4 photocathodes.

9.
Chem Sci ; 11(41): 11195-11204, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-34094360

ABSTRACT

p-Type CuBi2O4 is considered a promising metal oxide semiconductor for large-scale, economic solar water splitting due to the optimal band structure and low-cost fabrication. The main challenge in utilizing CuBi2O4 as a photoelectrode for water splitting, is that it must be protected from photo-corrosion in aqueous solutions, an inherent problem for Cu-based metal oxide photoelectrodes. In this work, several buffer layers (CdS, BiVO4, and Ga2O3) were tested between CuBi2O4 and conformal TiO2 as the protection layer. RuO x was used as the co-catalyst for hydrogen evolution. Factors that limit the photoelectrochemical performance of the CuBi2O4/TiO2/RuO x , CuBi2O4/CdS/TiO2/RuO x , CuBi2O4/BiVO4/TiO2/RuO x and CuBi2O4/Ga2O3/TiO2/RuO x heterojunction photoelectrodes were revealed by comparing photocurrents, band offsets, and directed charge transfer measured by modulated surface photovoltage spectroscopy. For CuBi2O4/Ga2O3/TiO2/RuO x photoelectrodes, barriers for charge transfer strongly limited the performance. In CuBi2O4/CdS/TiO2/RuO x , the absence of hole traps resulted in a relatively high photocurrent density and faradaic efficiency for hydrogen evolution despite the presence of pronounced deep defect states at the CuBi2O4/CdS interface. Hole trapping limited the performance moderately in CuBi2O4/BiVO4/TiO2/RuO x and strongly in CuBi2O4/TiO2/RuO x photoelectrodes. For the first time, our results show that hole trapping is a key factor that must be addressed to optimize the performance of CuBi2O4-based heterojunction photoelectrodes.

10.
Phys Chem Chem Phys ; 21(40): 22259-22271, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31588441

ABSTRACT

A short lifetime is the main factor hindering the wider implementation of low-cost organic photovoltaics in large-area and outdoor applications. Ingress of oxygen and water vapour through non-ideal encapsulation layers is a known cause of degradation for polymer/fullerene based solar cells. To better understand the origin of this performance degradation, we study the effect of intentional exposure of the photo-active layer to simulated sunlight (AM1.5) in air both on the solar cell performance and on the molecular semiconductor materials. Cathode-free thin films of a blend of the electron donor polymer poly[2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt-thiophene-2,5-diyl] (TQ1) and the electron acceptor fullerene derivative [6,6]-phenyl-C70-butyric acid methyl ester (PC70BM) were exposed to simulated sunlight in air. Fourier-transform infrared spectra demonstrate the formation of carbonyl photo-oxidation products in the blend films, as well as in the pristine polymer and fullerene films. Solar cells prepared with photo-oxidized active layers show increasingly degraded electrical performance (lower short circuit current, open circuit voltage and fill factor) with increasing exposure time. The increased diode ideality factor indicates that trap-assisted recombination hinders device operation after exposure. The external quantum efficiency decreases drastically with increasing exposure time over the whole photon energy range, while the UV-vis absorption spectra of the blend films only show a mild photo-induced bleaching. This demonstrates that not only the photo-induced degradation of the solar cell performance is not predominantly caused by the loss in light absorption, but charge transport and collection are also hampered. This is explained by the fact that photo-oxidation of PC70BM causes bonds in its conjugated cage to break, as evidenced by the decreased π* intensity in C1s-NEXAFS spectra of PC70BM films. This degradation of unoccupied states of PC70BM will hinder the transport of photo-generated electrons to the electrode. Surface photovoltage spectroscopy gives direct evidence for gap states at the surface of a PC70BM film, formed after 2 hours of exposure and resulting in upward band bending at the PC70BM/air surface. These observations indicate that the photo-oxidation of PC70BM is likely to be the main cause of the performance degradation observed when the photoactive layer of a TQ1:PC70BM solar cell is intentionally exposed to light in air.

11.
Phys Chem Chem Phys ; 20(37): 24444-24452, 2018 Oct 07.
Article in English | MEDLINE | ID: mdl-30221290

ABSTRACT

In-gap states in solar cell absorbers that are recombination centers determine the cell's photovoltaic performance. Using scanning tunneling spectroscopy (STS), temperature-dependent photoconductivity and steady-state photocarrier-grating measurements we probed, directly and indirectly, the energies of such states, both at the surface and in the bulk of two similar, but different halide perovskites, the single cation MAPbI3 (here MAPI) and the mixed cation halide perovskite, FA0.79MA0.16Cs0.05Pb(I0.83Br0.17)3 (here MCHP). We found a correlation between the energy distribution of the in-gap states, as determined by STS measurements, and their manifestation in the photo-transport parameters of the MCHP absorbers. In particular, our results suggest that the in-gap recombination centers in the MCHP are shallower than those of MAPI. This can be one explanation for the better photovoltaic efficiency of the former.

12.
Phys Chem Chem Phys ; 20(24): 16847-16852, 2018 Jun 20.
Article in English | MEDLINE | ID: mdl-29892728

ABSTRACT

Inorganic and organic lead halide perovskite materials attract great interest in the scientific community because of their potential for low-cost, high efficiency solar cells. In this report we add a new property of these materials, namely their photochemical activity in the visible light range. Both inorganic (CsPbBr3) and organic (CH3NH3PbBr3-MAPbBr3) perovskite thin films were demonstrated to promote photo-dissociation of adsorbed ethyl chloride (EC), employing 532 nm pulsed laser irradiation under ultra-high vacuum (UHV) conditions. From the post-irradiation temperature programmed desorption (TPD) analysis, the yield of photoproduct formation was found to be up to two orders of magnitude higher than for UV light-excited EC molecules on metallic and oxide surfaces. Photo-reactivity on top of the CsPbBr3 surface is almost an order of magnitude more efficient than on the CH3NH3PbBr3 surface, apparently due to the lower density of defect and surface states. A direct correlation was found between electron-induced luminescence and photoluminescence intensities and the photoreactivity cross-sections. We conclude that both the intense luminescence and the well-known photovoltaic properties associated with these halide perovskite materials are consistent with the efficiency of photo-reactivity in the visible range, reported here for the first time.

14.
J Phys Chem Lett ; 7(24): 5219-5226, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27973905

ABSTRACT

Photovoltaic solar cells operate under steady-state conditions that are established during the charge carrier excitation and recombination. However, to date no model of the steady-state recombination scenario in halide perovskites has been proposed. In this Letter we present such a model that is based on a single type of recombination center, which is deduced from our measurements of the illumination intensity dependence of the photoconductivity and the ambipolar diffusion length in those materials. The relation between the present results and those from time-resolved measurements, such as photoluminescence that are commonly reported in the literature, is discussed.

15.
ACS Appl Mater Interfaces ; 8(46): 31491-31499, 2016 Nov 23.
Article in English | MEDLINE | ID: mdl-27933974

ABSTRACT

We investigate the effect of high work function contacts in halide perovskite absorber-based photovoltaic devices. Photoemission spectroscopy measurements reveal that band bending is induced in the absorber by the deposition of the high work function molybdenum trioxide (MoO3). We find that direct contact between MoO3 and the perovskite leads to a chemical reaction, which diminishes device functionality. Introducing an ultrathin spiro-MeOTAD buffer layer prevents the reaction, yet the altered evolution of the energy levels in the methylammonium lead iodide (MAPbI3) layer at the interface still negatively impacts device performance.

16.
J Phys Chem Lett ; 7(1): 167-72, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26700466

ABSTRACT

Direct comparison between perovskite-structured hybrid organic-inorganic methylammonium lead bromide (MAPbBr3) and all-inorganic cesium lead bromide (CsPbBr3), allows identifying possible fundamental differences in their structural, thermal and electronic characteristics. Both materials possess a similar direct optical band gap, but CsPbBr3 demonstrates a higher thermal stability than MAPbBr3. In order to compare device properties, we fabricated solar cells, with similarly synthesized MAPbBr3 or CsPbBr3, over mesoporous titania scaffolds. Both cell types demonstrated comparable photovoltaic performances under AM1.5 illumination, reaching power conversion efficiencies of ∼6% with a poly aryl amine-based derivative as hole transport material. Further analysis shows that Cs-based devices are as efficient as, and more stable than methylammonium-based ones, after aging (storing the cells for 2 weeks in a dry (relative humidity 15-20%) air atmosphere in the dark) for 2 weeks, under constant illumination (at maximum power), and under electron beam irradiation.

17.
J Phys Chem Lett ; 7(1): 191-7, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26687721

ABSTRACT

Halide perovskite-based solar cells still have limited reproducibility, stability, and incomplete understanding of how they work. We track electronic processes in [CH3NH3]PbI3(Cl) ("perovskite") films in vacuo, and in N2, air, and O2, using impedance spectroscopy (IS), contact potential difference, and surface photovoltage measurements, providing direct evidence for perovskite sensitivity to the ambient environment. Two major characteristics of the perovskite IS response change with ambient environment, viz. -1- appearance of negative capacitance in vacuo or post-vacuo N2 exposure, indicating for the first time an electrochemical process in the perovskite, and -2- orders of magnitude decrease in the film resistance upon transferring the film from O2-rich ambient atmosphere to vacuum. The same change in ambient conditions also results in a 0.5 V decrease in the material work function. We suggest that facile adsorption of oxygen onto the film dedopes it from n-type toward intrinsic. These effects influence any material characterization, i.e., results may be ambient-dependent due to changes in the material's electrical properties and electrochemical reactivity, which can also affect material stability.

18.
J Phys Chem Lett ; 6(13): 2469-76, 2015 Jul 02.
Article in English | MEDLINE | ID: mdl-26266721

ABSTRACT

High band gap, high open-circuit voltage solar cells with methylammonium lead tribromide (MAPbBr3) perovskite absorbers are of interest for spectral splitting and photoelectrochemical applications, because of their good performance and ease of processing. The physical origin of high performance in these and similar perovskite-based devices remains only partially understood. Using cross-sectional electron-beam-induced current (EBIC) measurements, we find an increase in carrier diffusion length in MAPbBr3(Cl)-based solar cells upon low intensity (a few percent of 1 sun intensity) blue laser illumination. Comparing dark and illuminated conditions, the minority carrier (electron) diffusion length increases about 3.5 times from Ln = 100 ± 50 nm to 360 ± 22 nm. The EBIC cross section profile indicates a p-n structure between the n-FTO/TiO2 and p-perovskite, rather than the p-i-n structure, reported for the iodide derivative. On the basis of the variation in space-charge region width with varying bias, measured by EBIC and capacitance-voltage measurements, we estimate the net-doping concentration in MAPbBr3(Cl) to be 3-6 × 10(17) cm(-3).

19.
Langmuir ; 28(1): 404-15, 2012 Jan 10.
Article in English | MEDLINE | ID: mdl-22084890

ABSTRACT

A combined electronic transport-structure characterization of self-assembled monolayers (MLs) of alkyl-phosphonate (AP) chains on Al-AlOx substrates indicates a strong molecular structural effect on charge transport. On the basis of X-ray reflectivity, XPS, and FTIR data, we conclude that "long" APs (C14 and C16) form much denser MLs than do "short" APs (C8, C10, C12). While current through all junctions showed a tunneling-like exponential length-attenuation, junctions with sparsely packed "short" AP MLs attenuate the current relatively more efficiently than those with densely packed, "long" ones. Furthermore, "long" AP ML junctions showed strong bias variation of the length decay coefficient, ß, while for "short" AP ML junctions ß is nearly independent of bias. Therefore, even for these simple molecular systems made up of what are considered to be inert molecules, the tunneling distance cannot be varied independently of other electrical properties, as is commonly assumed.

SELECTION OF CITATIONS
SEARCH DETAIL
...