Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38645016

ABSTRACT

The cerebral cortex comprises diverse types of glutamatergic projection neurons (PNs) generated from radial glial progenitors (RGs) through either direct neurogenesis or indirect neurogenesis (iNG) via intermediate progenitors (IPs). A foundational concept in corticogenesis is the "inside-out" model whereby successive generations of PNs sequentially migrate to deep then progressively more superficial layers, but its biological significance remains unclear; and the role of iNG in this process is unknown. Using genetic strategies linking PN birth-dating to projection mapping in mice, we found that the laminar deployment of IP-derived PNs substantially deviate from an inside-out rule: PNs destined to non-consecutive layers are generated at the same time, and different PN types of the same layer are generated at non-contiguous times. The overarching scheme of iNG is the sequential specification and precise laminar deployment of projection-defined PN types, which may contribute to the orderly assembly of cortical output channels and processing streams. HIGHLIGHTS: - Each IP is fate-restricted to generate a pair of near-identical PNs - Corticogenesis involves the orderly generation of fate-restricted IP temporal cohorts - IP temporal cohorts sequentially as well as concurrently specify multiple PN types - The deployment of PN types to specific layers does not follow an inside-out order.

2.
J Neuroimmunol ; 381: 578139, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37364517

ABSTRACT

Anti-N-methyl-d-aspartate receptor autoimmune encephalitis (NMDAR AE) is an antibody-mediated neurological disorder that may be caused by post-herpes simplex virus-1 meningoencephalitis (HSV ME) and ovarian teratomas, although most pediatric cases are idiopathic. We sought to evaluate if other infections precede NMDAR AE by conducting a single-center, retrospective, case-control study of 86 pediatric cases presenting to Texas Children's Hospital between 2006 and 2022. HSV ME (HSV-1 and HSV-2) was a significantly more common preceding infection in the experimental group compared to control patients with idiopathic intracranial hypertension, while there was no difference in remote HSV infection between the two groups. Recent Epstein-Barr virus infection was evident in 8/42 (19%) tested experimental patients in comparison to 1/25 (4%) tested control patients which provided evidence for a genuine measure of effect but was not statistically significant due to small sample size (p = 0.07). The other 25 infectious etiologies were not different among the two groups and not all variables were clinically indicated or obtained in every subject, highlighting the need for future standardized, multi-institutional studies on underlying infectious precursors of autoimmune encephalitis.

3.
Neuron ; 111(16): 2557-2569.e4, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37348506

ABSTRACT

Variations in size and complexity of the cerebral cortex result from differences in neuron number and composition, rooted in evolutionary changes in direct and indirect neurogenesis (dNG and iNG) that are mediated by radial glia and intermediate progenitors (IPs), respectively. How dNG and iNG differentially contribute to neuronal number, diversity, and connectivity are unknown. Establishing a genetic fate-mapping method to differentially visualize dNG and iNG in mice, we found that while both dNG and iNG contribute to all cortical structures, iNG contributes the largest relative proportions to the hippocampus and neocortex. Within the neocortex, whereas dNG generates all major glutamatergic projection neuron (PN) classes, iNG differentially amplifies and diversifies PNs within each class; the two pathways generate distinct PN types and assemble fine mosaics of lineage-based cortical subnetworks. Our results establish a ground-level lineage framework for understanding cortical development and evolution by linking foundational progenitor types and neurogenic pathways to PN types.


Subject(s)
Cerebral Cortex , Neocortex , Mice , Animals , Cerebral Cortex/metabolism , Neurons/metabolism , Neocortex/physiology , Interneurons , Neurogenesis/physiology , Hippocampus
4.
Nature ; 598(7879): 182-187, 2021 10.
Article in English | MEDLINE | ID: mdl-34616069

ABSTRACT

Diverse types of glutamatergic pyramidal neurons mediate the myriad processing streams and output channels of the cerebral cortex1,2, yet all derive from neural progenitors of the embryonic dorsal telencephalon3,4. Here we establish genetic strategies and tools for dissecting and fate-mapping subpopulations of pyramidal neurons on the basis of their developmental and molecular programs. We leverage key transcription factors and effector genes to systematically target temporal patterning programs in progenitors and differentiation programs in postmitotic neurons. We generated over a dozen temporally inducible mouse Cre and Flp knock-in driver lines to enable the combinatorial targeting of major progenitor types and projection classes. Combinatorial strategies confer viral access to subsets of pyramidal neurons defined by developmental origin, marker expression, anatomical location and projection targets. These strategies establish an experimental framework for understanding the hierarchical organization and developmental trajectory of subpopulations of pyramidal neurons that assemble cortical processing networks and output channels.


Subject(s)
Cerebral Cortex/cytology , Gene Expression Regulation/genetics , Glutamic Acid/metabolism , Pyramidal Cells/cytology , Pyramidal Cells/metabolism , Animals , Cell Lineage/genetics , Cerebral Cortex/metabolism , Male , Mice , Pyramidal Cells/classification , Transcription Factors/metabolism
5.
Mult Scler Relat Disord ; 43: 102194, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32426208

ABSTRACT

Genetic (also known as familial) acute necrotizing encephalopathy (ANE1) is a rare disease presenting with encephalopathy often following preceding viral febrile illness in patients with a genetic predisposition resulting from a missense mutation in the gene encoding RAN Binding Protein 2 (RANBP2). The acute episode is characterized by deterioration in consciousness, often with focal neurologic deficits and seizures. Additionally, symmetric multifocal brain lesions are seen in the bilateral thalami as well as other characteristic regions, involving both gray and white matter. Prognosis is variable, with a high mortality rate and most surviving patients having persistent neurologic deficits. Early treatment with high dose steroids is associated with a more favorable outcome, however the diagnosis is often overlooked resulting in delayed treatment. The RANBP2 mutation associated with ANE1 causes an incompletely penetrant predisposition to encephalopathy in the setting of febrile illness through a mechanism that remains elusive. There are several non-mutually exclusive hypotheses suggesting possible etiologies for this phenotype based on the many functions of RANBP2 within the cell. These include dysfunctions in nucleocytoplasmic trafficking and intracellular metabolic regulation, as well as cytokine storm, and abnormal distribution of mitochondria. This narrative review explores these key concepts of the RANBP2 mutation and its clinical and therapeutic implications in pediatric populations.


Subject(s)
Brain Diseases , Leukoencephalitis, Acute Hemorrhagic , Pediatrics , Child , Humans , Leukoencephalitis, Acute Hemorrhagic/genetics , Leukoencephalitis, Acute Hemorrhagic/therapy , Molecular Chaperones , Nuclear Pore Complex Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...