Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Environ Res ; 258: 119466, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38908662

ABSTRACT

BACKGROUND: Industrial facilities across the United States (US) release millions of pounds of toxic chemicals, including metals. Exposure to toxic metals has been associated with adverse health outcomes, but there is limited evidence on the association between living near metal-releasing facilities and the body burden of emitted compounds. OBJECTIVE: To investigate the association between residential proximity to toxic metal-emitting industrial facilities and toenail metal concentrations and to evaluate whether associations differed by race. METHODS: In a sample of 1556 non-Hispanic Black (32.5%) and non-Hispanic White (67.5%) women from the Sister Study, we used the US Environmental Protection Agency Toxics Release Inventory to identify metal-emitting facilities within 3, 5, and 10 km of participants' baseline residences. We measured toenail concentrations (µg/g) of arsenic, cadmium, cobalt, chromium, and lead. Using multivariable linear regression, we examined associations between residential proximity to and emissions from metal-emitting facilities and toenail metal concentrations, stratifying by race. We explored modification of race-stratified associations by neighborhood deprivation, using the Area Deprivation Index (ADI). RESULTS: Black participants were more likely to reside within 3 km of chromium-releasing facilities and 5 and 10 km of all observed metal-emitting sites. Living near metal-releasing facilities was not associated with higher toenail metal concentrations overall. Among Black women, higher chromium emissions exposure was associated with higher toenail chromium levels (ßTertile3vs.non-exposed = 2.36 µg/g, 95% CI = 0.63, 4.10). An association with lead was observed among Black women residing in the most deprived areas (≥75th ADI percentile: ß = 3.08 µg/g, 95% CI = 1.46, 4.71). No associations were observed for White participants. CONCLUSIONS: Despite low exposure prevalence, our findings suggest that living near chromium- and lead-releasing facilities, especially at shorter distances, may be associated with higher corresponding toenail metal levels among Black women, particularly those residing in the most disadvantaged areas.

2.
Environ Adv ; 152024 Apr.
Article in English | MEDLINE | ID: mdl-38405619

ABSTRACT

BACKGROUND: Seasonal patterns in measured exposure biomarkers can cause measurement error in epidemiological studies. There is little research about the seasonality of metals and trace elements when assessed in toenail samples. Adjusting for such patterns in models for estimating associations between long-term exposures and health outcomes can potentially improve precision and reduce bias. OBJECTIVES: Assess and describe seasonal patterns in toenail measurements of trace elements. METHODS: The Sister Study enrolled women residing in the US, including Puerto Rico, whose sister had been diagnosed with breast cancer. At the time of enrollment, participants removed nail polish and collected their toenail clippings, which were cleaned before analysis. We considered the following elements: iron, vanadium, aluminum, chromium, manganese, cobalt, nickel, copper, zinc, arsenic, selenium, molybdenum, cadmium, tin, antimony, mercury, and lead. For two subsamples of the cohort, we fit trigonometric regression models with toenail element measures as the outcome, using sine and cosine functions of the collection day (transformed to an angle) to capture seasonal patterns. These models can estimate the amplitude and timing of the peaks in measures. We evaluated the evidence for a seasonal effect by comparing for each measured element the trigonometric model to a model that was constant across time. RESULTS: There was a seasonal trend in toenail element concentration for iron, aluminum, vanadium, chromium, manganese, cobalt, arsenic, molybdenum, cadmium, tin, and lead, all of which peaked near mid-August. Seasonal patterns were concordant across two non-overlapping samples of women, analyzed in different labs. DISCUSSION: Given the evidence supporting seasonal patterns for 11 of the 17 elements measured in toenails, correcting for seasonality of toenail levels of those trace elements in models estimating the association between those exposures and health outcomes is important. The basis for higher concentrations in toenails collected during the summer remains unknown.

3.
Sci Rep ; 14(1): 1682, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38242893

ABSTRACT

Iron status is often assessed in epidemiologic studies, and toenails offer a convenient alternative to serum because of ease of collection, transport, and storage, and the potential to reflect a longer exposure window. Very few studies have examined the correlation between serum and toenail levels for trace metals. Our aim was to compare iron measures using serum and toenails on both a cross-sectional and longitudinal basis. Using a subset of the US-wide prospective Sister Study cohort, we compared toenail iron measures to serum concentrations for iron, ferritin and percent transferrin saturation. Among 146 women who donated both blood and toenails at baseline, a subsample (59%, n = 86) provided specimens about 8 years later. Cross-sectional analyses included nonparametric Spearman's rank correlations between toenail and serum biomarker levels. We assessed within-woman maintenance of rank across time for the toenail and serum measures and fit mixed effects models to measure change across time in relation to change in menopause status. Spearman correlations at baseline (follow-up) were 0.08 (0.09) for serum iron, 0.08 (0.07) for transferrin saturation, and - 0.09 (- 0.17) for ferritin. The within-woman Spearman correlation for toenail iron between the two time points was higher (0.47, 95% CI 0.30, 0.64) than for serum iron (0.30, 95% CI 0.09, 0.51) and transferrin saturation (0.34, 95% CI 0.15, 0.54), but lower than that for ferritin (0.58, 95% CI 0.43, 0.73). Serum ferritin increased over time while nail iron decreased over time for women who experienced menopause during the 8-years interval. Based on cross-sectional and repeated assessments, our evidence does not support an association between serum biomarkers and toenail iron levels. Toenail iron concentrations did appear to be moderately stable over time but cannot be taken as a proxy for serum iron biomarkers and they may reflect physiologically distinct fates for iron.


Subject(s)
Iron , Nails , Humans , Female , Iron/metabolism , Nails/metabolism , Follow-Up Studies , Prospective Studies , Postmenopause , Cross-Sectional Studies , Ferritins , Biomarkers , Transferrins , Transferrin
4.
Toxicology ; 499: 153641, 2023 11.
Article in English | MEDLINE | ID: mdl-37806615

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are man-made long-lasting chemical compounds that are found in everyday household items. Today they occur in the environment as a major group of pollutants. These compounds are broadly used in commercial product preparation such as, for food packaging, nonstick coatings, and firefighting foam. In humans, PFAS can cause immune disorders, impaired fetal development, abnormal skeletal tissue development, osteoarthritis, thyroid dysfunctions, cholesterol changes, affect insulin regulation and lipid metabolism, and are also involved in the development of fatty liver disease. In the current study, we investigated the effect of low, but physiologically relevant, concentrations of perfluorooctanoic acid (PFOA), heptafluorobutyric acid (HFBA), and perfluorotetradecanoic acid (PFTA) on gene expression markers of an inflammatory response (tnfa, il-1b, il-6, rplp0, edem1, and dnajc3a), unfolded protein response (UPR) (bip, atf4a, atf6, xbp1, and ddit3), senescence (p21, pai1, smp30, mdm2, and baxa), lipogenesis (scd1, acc, srebp1, pparγ, and fasn) and autophagy (p62, atg3, atg7, rab7, lc3b, and becn1) in AB wild-type (+/+), spns1-wt sibling (+/+), (+/-) and spns1 homozygous mutant (-/-) zebrafish embryos. Exposure to PFOA and HFBA (50 and 100 nM) specifically modulated inflammatory, UPR, senescence, lipogenic, and autophagy signaling in spns1-wt (+/+), (+/-), and spns1-mutant (-/-) zebrafish embryos. Furthermore, PFOA, but not HFBA, upregulated lipogenic-related gene expression and enhanced hepatic steatosis in spns1-wt (+/+), (+/-) zebrafish embryos. Combined exposure to PFOA, HFBA, and PFTA differentially expressed inflammatory, senescence, lipogenic, and autophagy-associated gene expression in spns1-mutant (-/-) zebrafish embryos compared with spns1-wt (+/+), (+/-) and AB-wt (+/+) zebrafish embryos. In addition, chronic exposure (∼2 months) to PFOA (120-600 nM) upregulated the expression of hepatic lipogenic and steatosis biomarkers in AB-wt (+/+) zebrafish. Collectively, our data suggest that acute/chronic physiologically relevant concentrations of PFOA upregulate inflammatory, UPR, senescence, and lipogenic signaling in spns1-wt (+/+), (+/-) and spns1-mutant (-/-) zebrafish embryos as well as in two-month-old AB-wt zebrafish, by targeting autophagy and hence induces toxicity that could promote nonalcoholic fatty liver disease.


Subject(s)
Fluorocarbons , Non-alcoholic Fatty Liver Disease , Animals , Humans , Infant , Zebrafish , Fluorocarbons/toxicity
5.
Res Sq ; 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37461592

ABSTRACT

Seasonal patterns in measured exposure biomarkers can cause measurement error in epidemiological studies. There is little known about the seasonality of trace elements when measured in toenails. Adjusting for such patterns when estimating associations between long-term exposures and health outcomes could be needed to improve precision and reduce bias. Our goal was to assess seasonal patterns in toenail measurements of trace elements. At enrollment, Sister Study participants, who were US residents, removed polish and collected toenail clippings, which were cleaned before analysis. We measured: iron, vanadium, aluminum, chromium, manganese, cobalt, nickel, copper, zinc, arsenic, selenium, molybdenum, cadmium, tin, antimony, mercury, and lead. For a sample of the cohort we fit trigonometric regression models with toenail element measures as the outcome, using sine and cosine functions of the collection day of the year (transformed to an angle) to assess seasonality. Results were replicated in a second sample of women, with measurements done in a separate lab. There was a seasonal association between day of collection and toenail measures for iron, aluminum, vanadium, chromium, manganese, cobalt, arsenic, molybdenum, cadmium, tin, and lead, all of which peaked near mid-August. Seasonal patterns were concordant across the two samples of women. Given the evidence supporting seasonal patterns for 11 of the 17 elements measured in toenails, correcting for seasonality of toenail levels of those trace elements in models estimating the association between those exposures and health outcomes is important. The basis for higher concentrations in toenails collected during the summer remains unknown.

6.
Toxins (Basel) ; 15(7)2023 06 25.
Article in English | MEDLINE | ID: mdl-37505679

ABSTRACT

Freshwater prokaryotic cyanobacteria within harmful algal blooms produce cyanotoxins which are considered major pollutants in the aquatic system. Direct exposure to cyanotoxins through inhalation, skin contact, or ingestion of contaminated drinking water can target the liver and may cause hepatotoxicity. In the current study, we investigated the effect of low concentrations of cyanotoxins on cytotoxicity, inflammation, modulation of unfolded protein response (UPR), steatosis, and fibrosis signaling in human hepatocytes and liver cell models. Exposure to low concentrations of microcystin-LR (MC-LR), microcystin-RR (MC-RR), nodularin (NOD), and cylindrospermopsin (CYN) in human bipotent progenitor cell line HepaRG and hepatocellular carcinoma (HCC) cell lines HepG2 and SK-Hep1 resulted in increased cell toxicity. MC-LR, NOD, and CYN differentially regulated inflammatory signaling, activated UPR signaling and lipogenic gene expression, and induced cellular steatosis and fibrotic signaling in HCC cells. MC-LR, NOD, and CYN also regulated AKT/mTOR signaling and inhibited autophagy. Chronic exposure to MC-LR, NOD, and CYN upregulated the expression of lipogenic and fibrosis biomarkers. Moreover, RNA sequencing (RNA seq) data suggested that exposure of human hepatocytes, HepaRG, and HCC HepG2 cells to MC-LR and CYN modulated expression levels of several genes that regulate non-alcoholic fatty liver disease (NAFLD). Our data suggest that low concentrations of cyanotoxins can cause hepatotoxicity and cell steatosis and promote NAFLD progression.


Subject(s)
Bacterial Toxins , Carcinoma, Hepatocellular , Chemical and Drug Induced Liver Injury , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/chemically induced , Bacterial Toxins/toxicity , Cyanobacteria Toxins , Microcystins/toxicity , Fibrosis
8.
Environ Toxicol ; 38(4): 783-797, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36602393

ABSTRACT

Cadmium (Cd) is an environmental pollutant that increases hepatotoxicity and the risk of liver diseases. In the current study, we investigated the effect of a physiologically relevant, low concentration of Cd on the regulation of liver cancer cell proliferation, steatosis, and fibrogenic/oncogenic signaling. Exposure to low concentrations of Cd increased endogenous reactive oxygen species (ROS) production and enhanced cell proliferation in a human bipotent progenitor cell line HepaRG and hepatocellular carcinoma (HCC) cell lines. Acute exposure of Cd increased Jagged-1 expression and activated Notch signaling in HepaRG and HCC cells HepG2 and SK-Hep1. Cd activated AKT/mTOR signaling by increasing phosphorylation of AKT-S473 and mTOR-S-4448 residues. Moreover, a low concentration of Cd also promoted cell steatosis and induced fibrogenic signaling in HCC cells. Chronic exposure to low concentrations of Cd-activated Notch and AKT/mTOR signaling induced the expression of pro-inflammatory cytokines tumor necrosis factor-alpha (TNFα) and its downstream target TNF-α-Induced Protein 8 (TNFAIP8). RNA-Seq data revealed that chronic exposure to low concentrations of Cd modulated the expression of several fatty liver disease-related genes involved in cell steatosis/fibrosis in HepaRG and HepG2 cells. Collectively, our data suggest that low concentrations of Cd modulate steatosis along with fibrogenic and oncogenic signaling in HCC cells by activating Notch and AKT/mTOR pathways.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Cadmium/toxicity , Proto-Oncogene Proteins c-akt/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , TOR Serine-Threonine Kinases/metabolism , Cell Line, Tumor
9.
Environ Toxicol ; 38(1): 225-242, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36251517

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS), which include perfluorooctanoic acid (PFOA), heptafluorobutyric acid (HFBA), and perfluorotetradecanoic acid (PFTA), are commonly occurring organic pollutants. Exposure to PFAS affects the immune system, thyroid and kidney function, lipid metabolism, and insulin signaling and is also involved in the development of fatty liver disease and cancer. The molecular mechanisms by which PFAS cause fatty liver disease are not understood in detail. In the current study, we investigated the effect of low physiologically relevant concentrations of PFOA, HFBA, and PFTA on cell survival, steatosis, and fibrogenic signaling in liver cell models. Exposure of PFOA and HFBA (10 to 1000 nM) specifically promoted cell survival in HepaRG and HepG2 cells. PFAS increased the expression of TNFα and IL6 inflammatory markers, increased endogenous reactive oxygen species (ROS) production, and activated unfolded protein response (UPR). Furthermore, PFAS enhanced cell steatosis and fibrosis in HepaRG and HepG2 cells which were accompanied by upregulation of steatosis (SCD1, ACC, SRBP1, and FASN), and fibrosis (TIMP2, p21, TGFß) biomarkers expression, respectively. RNA-seq data suggested that chronic exposures to PFOA modulated the expression of fatty acid/lipid metabolic genes that are involved in the development of NFALD and fatty liver disease. Collectively our data suggest that acute/chronic physiologically relevant concentrations of PFAS enhance liver cell steatosis and fibrosis by the activation of the UPR pathway and by modulation of NFALD-related gene expression.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Non-alcoholic Fatty Liver Disease , Humans , Fluorocarbons/toxicity , Unfolded Protein Response , Environmental Pollutants/toxicity , Fibrosis
10.
Anal Lett ; 55(8): 1269-1280, 2022.
Article in English | MEDLINE | ID: mdl-35571259

ABSTRACT

Thallium (Tl) can be released as a byproduct of smelting, mining, and other industries, causing human exposure. There are knowledge gaps on the toxicity of thallium compounds, so the National Toxicology Program is investigating the toxicity of thallium (I) sulfate in rodents. We developed and validated a method to quantitate Tl in rodent plasma and secondary matrices. Primary matrix standards and validation samples were digested with nitric acid and analyzed for Tl by inductively-coupled plasma - mass spectrometry (ICP-MS). Method performance was validated for linearity, accuracy, precision, and other criteria. Calibration was linear from 1.25 to 500 ng Tl/mL plasma; accuracy (RE) was -5.9 to 2.6% for all calibration standards. The lower limit of quantitation (LLOQ) was 1.25 ng Tl/mL plasma, and the limit of detection was 0.0370 ng Tl/mL plasma. Intra- and interday RE and precision (RSD) were -5.6 to -1.7% and ≤0.8% (intraday) and -4.8 to -1.3% and ≤4.3% (interday), respectively, at three sample concentration levels. Standards up to 10.0 × 103 ng/mL could be analyzed by dilution with digested blank matrix, with -6.4% RE and 5.4% RSD. Method was also evaluated in post-natal day 4 (PND4) Hsd:Sprague Dawley SD (HSD) dam and pup plasma, gestation day 18 (GD 18) HSD rat fetal homogenate, HSD rat urine, female HSD rat brain homogenate, female B6C3F1 mouse plasma. Background Tl was detected in control fetal and brain homogenates and urine at < 30% of LLOQ response. Results demonstrate that the method is suitable for determination of Tl in rodent matrices for toxicology studies.

11.
Anal Lett ; 54(17): 2777-2788, 2021.
Article in English | MEDLINE | ID: mdl-34898679

ABSTRACT

Human exposure to vanadium (V) is anticipated because it is a drinking water contaminant. Due to limited data on soluble V salts, the National Toxicology Program is investigating the toxicity in rodents following drinking water exposure. Measurement of internal V dose allows for interpretation of toxicology data. The objective of this study was to develop and validate an inductively coupled plasma-mass spectrometric method to quantitate total V in rat plasma. The method was linear (r ≥ 0.99) from 5.00 - 1,000 ng V/mL. Intra- and inter-day relative error (% RE) and relative standard deviation (% RSD) of spiked plasma samples were 8.5% - 15.6% RE and ≤ 1.8% RSD and 7.3% - 11.7% RE and ≤ 3.1% RSD, respectively. The limit of detection was 0.268 ng V/mL plasma and absolute percent recovery was 113%. Standards up to 7,500 ng V/mL plasma were diluted into the validated range (5.6% RE, 0.9% RSD). V in extracted plasma samples over 15 days at ambient and refrigerated conditions was from 97.7 - 126% of day 0. Determined plasma V concentrations after three freeze-thaw cycles and after frozen storage for up to 63 days ranged from 100 - 106% and 100 - 122% of day 0, respectively. The method was extended to rat urine (accuracy and precision -2.0 - 0.3% RE and <0.6% RSD, respectively for same linear range). These data demonstrate that the method is suitable to quantitate V in rat plasma and urine.

12.
J Toxicol ; 2021: 9564297, 2021.
Article in English | MEDLINE | ID: mdl-34422041

ABSTRACT

Cadmium (Cd) is a toxic pollutant that is associated with several severe human diseases. Cd can be easily absorbed in significant quantities from air contamination/industrial pollution, cigarette smoke, food, and water and primarily affects the liver, kidney, and lungs. Toxic effects of Cd include hepatotoxicity, nephrotoxicity, pulmonary toxicity, and the development of various human cancers. Cd is also involved in the development and progression of fatty liver diseases and hepatocellular carcinoma. Cd affects liver function via modulation of cell survival/proliferation, differentiation, and apoptosis. Moreover, Cd dysregulates hepatic autophagy, an endogenous catabolic process that detoxifies damaged cell organelles or dysfunctional cytosolic proteins through vacuole-mediated sequestration and lysosomal degradation. In this article, we review recent developments and findings regarding the role of Cd in the modulation of hepatotoxicity, autophagic function, and liver diseases at the molecular level.

13.
Am J Epidemiol ; 190(11): 2360-2373, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34268559

ABSTRACT

The role of metals in breast cancer is of interest because of their carcinogenic and endocrine-disrupting capabilities. Evidence from epidemiologic studies remains elusive, and prior studies have not investigated metal mixtures. In a case cohort nested within the Sister Study (enrolled in 2003-2009; followed through September 2017), we measured concentrations of 15 metals in toenails collected at enrollment in a race/ethnicity-stratified sample of 1,495 cases and a subcohort of 1,605 women. We estimated hazard ratios and 95% confidence intervals for each metal using Cox regression and robust variance. We used quantile g-computation to estimate the joint association between multiple metals and breast cancer risk. The average duration of follow-up was 7.5 years. There was little evidence supporting an association between individual metals and breast cancer. An exception was molybdenum, which was associated with reduced incidence of overall breast cancer risk (third tertile vs. first tertile: hazard ratio = 0.82, 95% confidence interval: 0.67, 1.00). An inverse association for antimony was observed among non-Hispanic Black women. Predefined groups of metals (all metals, nonessential metals, essential metals, and metalloestrogens) were not strongly associated with breast cancer. This study offers little support for metals, individually or as mixtures, as risk factors for breast cancer. Mechanisms for inverse associations with some metals warrant further study.


Subject(s)
Breast Neoplasms/chemically induced , Carcinoma, Intraductal, Noninfiltrating/chemically induced , Metals/adverse effects , Receptors, Estrogen/metabolism , Aged , Breast Neoplasms/ethnology , Breast Neoplasms/metabolism , Carcinoma, Intraductal, Noninfiltrating/ethnology , Carcinoma, Intraductal, Noninfiltrating/metabolism , Female , Humans , Menopause , Metals/analysis , Middle Aged , Nails/chemistry , Prospective Studies , Risk Factors , United States/epidemiology
15.
Toxicol Appl Pharmacol ; 412: 115395, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33421504

ABSTRACT

Vanadium is a ubiquitous environmental contaminant that exists in multiple oxidation states. Humans are exposed to vanadyl (V4+) and vanadate (V5+) from dietary supplements, food, and drinking water and hence there is a concern for adverse human health. The current investigation is aimed at identifying vanadium oxidation states in vitro and in vivo and internal concentrations following exposure of rats to vanadyl sulfate (V4+) or sodium metavanadate (V5+) via drinking water for 14 d. Investigations in simulated gastric and intestinal fluids showed that V4+ was stable in gastric fluid while V5+ was stable in intestinal fluid. Analysis of rodent plasma showed that the only vanadium present was V4+, regardless of the exposed compound suggesting conversion of V5+ to V4+ in vivo and/or instability of V5+ species in biological matrices. Plasma, blood, and liver concentrations of total vanadium, after normalizing for vanadium dose consumed, were higher in male and female rats following exposure to V5+ than to V4+. Following exposure to either V4+ or V5+, the total vanadium concentration in plasma was 2- to 3-fold higher than in blood suggesting plasma as a better matrix than blood for measuring vanadium in future work. Liver to blood ratios were 4-7 demonstrating significant tissue retention following exposure to both compounds. In conclusion, these data point to potential differences in absorption and disposition properties of V4+ and V5+ salts and may explain the higher sensitivity in rats following drinking water exposure to V5+ than V4+ and highlights the importance of internal dose determination in toxicology studies.


Subject(s)
Vanadates/pharmacokinetics , Vanadium Compounds/pharmacokinetics , Administration, Oral , Animals , Body Burden , Drinking Water , Female , Gastric Juice/chemistry , Gastrointestinal Absorption , Intestinal Secretions/chemistry , Liver/metabolism , Male , Oxidation-Reduction , Rats, Sprague-Dawley , Tissue Distribution , Toxicokinetics , Vanadates/administration & dosage , Vanadates/blood , Vanadates/toxicity , Vanadium Compounds/administration & dosage , Vanadium Compounds/blood , Vanadium Compounds/toxicity
16.
Environ Res ; 192: 110270, 2021 01.
Article in English | MEDLINE | ID: mdl-33035557

ABSTRACT

INTRODUCTION: The incidence of chronic kidney disease of unknown or uncertain etiology (CKDu) is recognized as a global non-communicable health crisis. The goal of this work is to compare the types of research studies in Latin America and Asia, two regions with increasing CKDu incidence. METHODS: A comparative literature review was conducted to evaluate the CKDu research design for peer-reviewed articles published from 2015 to 2019. Full texts were reviewed to identify study location, study type, study design, risk factors evaluated, and if applicable, sample type and number. RESULTS: In Asia and Latin America, 82 and 65 articles were identified in total, respectively, with 55 field studies in Asia versus 34 in Latin America. In Asia, research was focused on drinking water (34), heavy metals (20), and agrochemical product usage (19) as potential risk factors. In Latin America, research focused mostly on heat stress/dehydration (36) and agrochemical product usage (18) as potential CKDu risk factors. Biological samples were collected more frequently than environmental samples, especially in Latin America. DISCUSSION: Research to pinpoint the risk factors associated with CKDu to date is not standardized and typically limited in geographical scope. The emphasis of CKDu research varies by geographic region, with a greater priority placed on water quality and chemical exposure in Asia, versus dehydration and heat stress in Latin America. Using a harmonized approach to CKDu research would yield improved understanding of the risk factors associated with CKDu and how they compare across affected regions.


Subject(s)
Drinking Water , Metals, Heavy , Renal Insufficiency, Chronic , Asia/epidemiology , Drinking Water/analysis , Humans , Latin America/epidemiology , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/etiology , Sri Lanka
17.
J Environ Qual ; 49(3): 762-768, 2020 May.
Article in English | MEDLINE | ID: mdl-33016392

ABSTRACT

Sulfur (S) and sulfate (SO4 2- ) in fine particulate matter (PM2.5 ) are monitored by the Interagency Monitoring of Protected Visual Environments (IMPROVE) network at remote and rural sites across the United States. Within the IMPROVE network, S is determined from X-ray fluorescence (XRF) spectroscopy from a Teflon filter, and SO4 2- is determined via ion chromatography (IC) from a nylon filter. Differences in S and SO4 2- estimates may indicate the presence of organosulfur (OS) species or biases between sampling and analytical methods. To reduce potential biases, an inductively coupled plasma-optical emission spectroscopy (ICP-OES) method was developed to allow for analysis of SO4 2- and S from a single filter extract. Sulfur (ICP-OES) and SO4 2- (IC) estimates from 2016 IMPROVE filters correlated strongly, suggesting that, on average, ICP-OES accurately estimated S. However, observed differences between slopes suggested the presence of water-soluble OS species, especially during summer. Organosulfur species are important indicators of secondary organic aerosols formed through reactions of biogenic and anthropogenic pollutants and can be quantified through laboratory techniques such as reverse-phase liquid chromatography (RPLC) or hydrophilic liquid interaction chromatography (HILIC) coupled to electrospray ionization-high-resolution tandem mass spectrometry (RPLC/ESI-HR-MS/MS and HILIC/ESI-HR-MS/MS, respectively), and field techniques using Aerodyne aerosol mass spectrometry (AMS). However, these methods are costly and introduce relatively large uncertainties when scaled for large networks such as IMPROVE. The method described in this report provides an inexpensive complement to XRF, which measures total S (insoluble and water-soluble S) to estimate water-soluble S and OS concentrations in PM.


Subject(s)
Nylons , Tandem Mass Spectrometry , Aerosols , Spectrum Analysis , Sulfur , United States
18.
Int J Cancer ; 147(11): 3110-3118, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32506449

ABSTRACT

Cadmium and lead are persistent environmental toxins that are known or probable carcinogens, based on evidence for causality for nonhematologic cancers. Associations of these metals with risk of non-Hodgkin lymphoma (NHL) and multiple myeloma (MM) are unknown but biologically plausible. To examine the associations of circulating levels of lead and cadmium exposure with risk of B-cell NHL (B-NHL) and multiple myeloma, we conducted a nested case-control study among 299 incident B-cell NHLs and 76 MM cases within the Cancer Prevention Study-II Nutrition Cohort (CPS-II NC). Each case was incidence-density matched to two eligible controls on age, race, sex and blood draw date. Conditional logistic regression was used to estimate relative risks (RR) and 95% confidence intervals (CI) for lymphoid malignancies overall and stratified by subtype. We observed a significant positive association between high erythrocyte lead concentration and risk of lymphoid malignancies overall (RR = 1.16, 95% CI: 1.02-1.33 per 17.6 µg/L (1 standard deviation [SD])) and follicular lymphoma in particular (RR = 1.80, 95% CI: 1.15-2.80 per SD). In contrast, there was no association between erythrocyte cadmium and risk of B-NHL (RR = 0.89, 95% CI: 0.75-1.06 per 0.37 µg/L [1 SD]), or any B-NHL subtypes; but a strong inverse association with MM risk (RR = 0.59, 95% CI: 0.38-0.89, per SD). Results from our study suggest a positive association between erythrocyte lead level and risk of lymphoid malignancies and a possible inverse association between cadmium and myeloma. Additional research is needed to confirm and further explore these findings.


Subject(s)
Cadmium/blood , Erythrocytes/chemistry , Lead/blood , Lymphoma, Non-Hodgkin/epidemiology , Multiple Myeloma/epidemiology , Adult , Aged , Aged, 80 and over , Cadmium/adverse effects , Case-Control Studies , Female , Humans , Incidence , Lead/adverse effects , Logistic Models , Lymphoma, Non-Hodgkin/etiology , Male , Middle Aged , Multiple Myeloma/etiology , Risk Factors
19.
Environ Res ; 183: 109126, 2020 04.
Article in English | MEDLINE | ID: mdl-32062181

ABSTRACT

BACKGROUND: Drinking water is a lingering hazard in the effort to eliminate childhood exposure to lead (Pb), a neurotoxin that affects cognitive and behavioral development. This study characterized Pb in municipal drinking water at North Carolina, US, childcare centers. The study also demonstrates a scalable, citizen science-based drinking water testing strategy for Pb at childcare centers. METHODS: Licensed childcare centers in four North Carolina counties were recruited. One administrator per center completed a survey and was trained to collect first-draw drinking water samples in their center. Samples were shipped with pre-paid labels for laboratory analysis using inductively coupled plasma mass spectrometry. Multilevel logistic regression and Bayesian network analysis were used to identify factors associated with a risk of exceeding the 1 µg/L American Academy of Pediatrics reference level and the US Environmental Protection Agency (US EPA) 15 µg/L treatment-based action level. Results were provided to centers along with risk mitigation recommendations. RESULTS: Of 103 enrolled centers, 86 completed the study, submitting 1,266 drinking water samples in total. Approximately 77% of drinking water samples contained detectable Pb (≥0.1 µg/L), and 97% of centers had at least one drinking water sample with detectable Pb. More than 63% of centers had at least one drinking water sample with >1 µg/L Pb, and 17% of centers had at least one drinking water sample with Pb above 15 µg/L. There was high variability in Pb concentrations at water points within the same center. DISCUSSION: This study demonstrated a high prevalence and variability of Pb in first-draw samples of drinking water at childcare centers in North Carolina, US. Results underscore the importance of testing for Pb at every tap used for drinking and cooking in childcare centers. The use of employees as citizen scientists is a feasible strategy to identify Pb in specific drinking water taps.


Subject(s)
Drinking Water , Lead , Water Pollutants, Chemical , Bayes Theorem , Child , Citizen Science , Drinking Water/chemistry , Humans , Lead/analysis , North Carolina
20.
Int J Cancer ; 144(5): 1010-1016, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30117163

ABSTRACT

Cadmium and lead have been classified as carcinogens by the International Agency for Research on Cancer. However, their associations with breast cancer risk are unknown despite their persistence in the environment and ubiquitous human exposure. We examined associations of circulating levels of cadmium and lead with breast cancer risk in three case-control studies nested within the Cancer Prevention Study-II (CPS-II) LifeLink Cohort, European Prospective Investigation into Cancer and Nutrition - Italy (EPIC-Italy) and the Northern Sweden Health and Disease Study (NSHDS) cohorts. Metal levels were measured in stored erythrocytes from 1,435 cases and 1,433 controls using inductively coupled plasma-mass spectrometry. Summary relative risks (RR) and 95% confidence intervals (CI) were calculated using random-effects models with each study result weighted by the within- and between-study variances. I2 values were calculated to estimate proportion of between study variation. Using common cut-points, cadmium levels were not associated with breast cancer risk in the CPS-II cohort (continuous RR = 1.01, 95% CI 0.76-1.34), but were inversely associated with risk in the EPIC- Italy (continuous RR = 0.80, 95% CI 0.61-1.03) and NSHDS cohorts (continuous RR = 0.73, 95% CI 0.54-0.97). The inverse association was also evident in the meta-analysis (continuous RR = 0.84, 95% CI 0.69-1.01) with low between-study heterogeneity. Large differences in lead level distributions precluded a meta-analysis of their association with breast cancer risk; no associations were found in the three studies. Adult cadmium and lead levels were not associated with higher risk of breast cancer in our large meta-analysis.


Subject(s)
Breast Neoplasms/blood , Breast Neoplasms/etiology , Cadmium/blood , Lead/blood , Aged , Aged, 80 and over , Carcinogens/toxicity , Case-Control Studies , Environmental Exposure/adverse effects , Female , Humans , Italy , Middle Aged , Prospective Studies , Risk Factors , Sweden
SELECTION OF CITATIONS
SEARCH DETAIL
...