Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Eur Heart J Cardiovasc Imaging ; 25(4): 491-497, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-37936296

ABSTRACT

AIMS: The aim of the study is to assess the impact of the baseline plaque composition on the DREAMS 3G luminal late loss and to compare the serial plaque changes between baseline and 6 and 12 months (M) follow-up. METHODS AND RESULTS: A total of 116 patients were enrolled in the BIOMAG-I trial. Patients were imaged with optical coherence tomography (OCT) pre- and post-DREAMS 3G implantation and at 6 and 12 M. OCTPlus software uses artificial intelligence to assess composition (i.e. lipid, calcium, and fibrous tissue) of the plaque. The differences between the OCT-derived minimum lumen area (MLA) post-percutaneous coronary intervention and 12 M were grouped into three terciles. Patients with larger MLA differences at 12 M (P = 0.0003) had significantly larger content of fibrous tissue at baseline. There was a reduction of 24.8% and 20.9% in lipid area, both P < 0.001, between the pre-DREAMS 3G OCT and the 6 and 12 M follow-up. Conversely, the fibrous tissue increased by 48.4% and 36.0% at 6 and 12 M follow-up, both P < 0.001. CONCLUSION: The larger the fibrous tissue in the lesion at baseline, the larger the luminal loss seen at 6 and 12 M. Following the implantation of DREAMS 3G, favourable healing of the vessel coronary wall occurs as shown by a decrease in the lipid area and an increase in fibrous tissue.


Subject(s)
Coronary Artery Disease , Drug-Eluting Stents , Percutaneous Coronary Intervention , Plaque, Atherosclerotic , Humans , Absorbable Implants , Artificial Intelligence , Coronary Angiography , Coronary Vessels , Lipids , Tomography, Optical Coherence/methods , Treatment Outcome
2.
Cardiovasc Revasc Med ; 58: 79-87, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37474355

ABSTRACT

BACKGROUND: To assess the reproducibility of coronary tissue characterization by an Artificial Intelligence Optical Coherence Tomography software (OctPlus, Shanghai Pulse Medical Imaging Technology Inc.). METHODS: 74 patients presenting with multivessel ST-segment elevation myocardial infarction (STEMI) underwent optical coherence tomography (OCT) of the infarct-related artery at the end of primary percutaneous coronary intervention (PPCI) and during staged PCI (SPCI) within 7 days thereafter in the MATRIX (Minimizing Adverse Hemorrhagic Events by Transradial Access Site and angioX) Treatment-Duration study (ClinicalTrials.gov, NCT01433627). OCT films were run through the OctPlus software. The same region of interest between either side of the stent and the first branch was identified on OCT films for each patient at PPCI and SPCI, thus generating 94 pairs of segments. 42 pairs of segments were re-analyzed for intra-software difference. Five plaque characteristics including cholesterol crystal, fibrous tissue, calcium, lipid, and macrophage content were analyzed for various parameters (span angle, thickness, and area). RESULTS: There was no statistically significant inter-catheter (between PPCI and SPCI) or intra-software difference in the mean values of all the parameters. Inter-catheter correlation for area was best seen for calcification [intraclass correlation coefficient (ICC) 0.86], followed by fibrous tissue (ICC 0.87), lipid (ICC 0.62), and macrophage (ICC 0.43). Some of the inter-catheter relative differences for area measurements were large: calcification 9.75 %; cholesterol crystal 74.10 %; fibrous tissue 5.90 %; lipid 4.66 %; and macrophage 1.23 %. By the intra-software measurements, there was an excellent correlation (ICC > 0.9) for all tissue types. The relative differences for area measurements were: calcification 0.64 %; cholesterol crystal 5.34 %; fibrous tissue 0.19 %; lipid 1.07 %; and macrophage 0.60 %. Features of vulnerable plaque, minimum fibrous cap thickness and lipid area showed acceptable reproducibility. CONCLUSION: The present study demonstrates an overall good reproducibility of tissue characterization by the Artificial Intelligence Optical Coherence Tomography software. In future longitudinal studies, investigators may use discretion in selecting the imaging endpoints and sample size, accounting for the observed relative differences in this study.


Subject(s)
Coronary Artery Disease , Percutaneous Coronary Intervention , Plaque, Atherosclerotic , Humans , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/therapy , Percutaneous Coronary Intervention/adverse effects , Percutaneous Coronary Intervention/methods , Artificial Intelligence , Tomography, Optical Coherence , Reproducibility of Results , China , Longitudinal Studies , Software , Lipids , Cholesterol , Coronary Vessels/diagnostic imaging
3.
JACC Cardiovasc Imaging ; 16(7): 965-981, 2023 07.
Article in English | MEDLINE | ID: mdl-37052555

ABSTRACT

ST-segment elevation myocardial infarction (STEMI) treatment with primary percutaneous coronary intervention has dramatically impacted prognosis. However, despite satisfactory angiographic result, occurrence or persistence of coronary microvascular dysfunction after revascularization still affects long-term outcomes. The diagnostic and therapeutic value of understanding the status of coronary microcirculation is gaining attention in the cardiology community. However, current methods to assess microvascular function (namely, cardiac magnetic resonance and invasive wire-based coronary physiology) remain, at least in part, limited by technical and logistic aspects. On the other hand, angiography-based indices of microcirculatory resistance are emerging as valid and user-friendly tools with potential impact on prognostic stratification of patients with STEMI. This review provides an overview about conventional and novel methods to assess coronary microvascular dysfunction in patients with STEMI. The authors also provide a proposed procedural algorithm to facilitate optimal use of wire-based and angiography-based indices in the acute setting of STEMI.


Subject(s)
Myocardial Infarction , Percutaneous Coronary Intervention , ST Elevation Myocardial Infarction , Humans , ST Elevation Myocardial Infarction/diagnostic imaging , ST Elevation Myocardial Infarction/therapy , Coronary Vessels/diagnostic imaging , Coronary Circulation , Microcirculation , Predictive Value of Tests , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/therapy , Coronary Angiography , Treatment Outcome
4.
Cardiovasc Revasc Med ; 54: 33-38, 2023 09.
Article in English | MEDLINE | ID: mdl-37087308

ABSTRACT

AIMS: Standard manual analysis of IVUS to study the impact of anti-atherosclerotic therapies on the coronary vessel wall is done by a core laboratory (CL), the ground truth (GT). Automatic segmentation of IVUS with a machine learning (ML) algorithm has the potential to replace manual readings with an unbiased and reproducible method. The aim is to determine if results from a CL can be replicated with ML methods. METHODS: This is a post-hoc, comparative analysis of the IBIS-4 (Integrated Biomarkers and Imaging Study-4) study (NCT00962416). The GT baseline and 13-month follow-up measurements of lumen and vessel area and percent atheroma volume (PAV) after statin induction were repeated by the ML algorithm. RESULTS: The primary endpoint was change in PAV. PAV as measured by GT was 43.95 % at baseline and 43.02 % at follow-up with a change of -0.90 % (p = 0.007) while the ML algorithm measured 43.69 % and 42.41 % for baseline and follow-up, respectively, with a change of -1.28 % (p < 0.001). Along the most diseased 10 mm segments, GT-PAV was 52.31 % at baseline and 49.42 % at follow-up, with a change of -2.94 % (p < 0.001). The same segments measured by the ML algorithm resulted in PAV of 51.55 % at baseline and 47.81 % at follow-up with a change of -3.74 % (p < 0.001). CONCLUSIONS: PAV, the most used endpoint in clinical trials, analyzed by the CL is closely replicated by the ML algorithm. ML automatic segmentation of lumen, vessel and plaque effectively reproduces GT and may be used in future clinical trials as the standard.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Plaque, Atherosclerotic , Humans , Atherosclerosis/diagnostic imaging , Atherosclerosis/drug therapy , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/drug therapy , Coronary Vessels/diagnostic imaging , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Ultrasonography, Interventional/methods
5.
Cardiol J ; 29(6): 906-916, 2022.
Article in English | MEDLINE | ID: mdl-36385601

ABSTRACT

BACKGROUND: Limus-eluting stents have become the mainstay for percutaneous coronary intervention (PCI). However, even with the latest generation drug-eluting stent, in-stent restenosis and very late stent thrombosis remain a concern. The Selution SLR™ drug-coated balloon (DCB) is a novel sirolimus-coated balloon that provides a controlled release of the antiproliferative drug. Herein we evaluated its performance in a real-world patient cohort with complex coronary artery lesions. METHODS: Patients undergoing PCI using the Selution SLR™ DCB were analyzed from the prospective SIROOP registry. We evaluated procedural success and clinical outcomes, including major adverse cardiovascular event (MACE), cardiac death, target vessel myocardial infarction and target lesion revascularization. RESULTS: From September 2020 to April 2021, we enrolled 78 patients (87 lesions) treated using a "DCB only" strategy. The mean age was 66.7 ± 10.4 years and 28 (36%) presented with an acute coronary syndrome. Almost all lesions were type B2/C 86 (99%) and 49 (63%) had moderate to severe calcifications. Procedural success was 100%. After a median follow-up of 11.2 months (interquartile range: 10.0-12.6), MACE occurred in 5 (6.8%) patients. No acute vessel closure was observed. CONCLUSIONS: In complex coronary lesions, a "DCB only" strategy using the Selution SLR™ DCB is not just safe and feasible, but also seems to be associated with a low rate of MACE at 1-year follow-up. Our promising results warrant further evaluation in a dedicated comparative trial.


Subject(s)
Coronary Artery Disease , Coronary Restenosis , Drug-Eluting Stents , Percutaneous Coronary Intervention , Humans , Middle Aged , Aged , Percutaneous Coronary Intervention/adverse effects , Sirolimus/adverse effects , Prospective Studies , Treatment Outcome , Metals , Coronary Restenosis/diagnostic imaging , Coronary Restenosis/etiology , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/surgery , Coronary Angiography
6.
Int J Cardiovasc Imaging ; 38(8): 1663-1670, 2022 Aug.
Article in English | MEDLINE | ID: mdl-37726521

ABSTRACT

Quantitative flow ratio (QFR) is a computational measurement of FFR (fractional flow reserve), calculated from coronary angiography. Latest QFR software automates TIMI frame counting (TFC), which occurs during the flow step of QFR analyses, making the analysis faster and more reproducible. The objective is to determine the diagnostic performance of QFR values obtained from analyses using automatic TFC compared to those obtained from analyses using manual TFC. This was a single-arm clinical trial that used the prospective analysis of the coronary angiographic image series of 97 patients who underwent evaluation of stable coronary artery disease with FFR/iFR at MedStar Washington Hospital Center in Washington, DC, USA. Automatic and manual TFC QFR values were obtained from the analyses of each of the 97 patients' image series, with manual TFC QFR values as the current gold standard for comparison. The diagnostic performance of automatic TFC QFR values was measured as follows: sensitivity was 0.87 (95% CI 0.66-0.97) and specificity was 1.00 (95% CI 0.9514-1.00), positive predictive value (PPV) was 1.00 (95%CI 1.00-1.00), while the NPV was 0.96 (95% CI 0.96-0.99). Overall accuracy was 96.91% (95% CI 91.23%-99.36%). The agreement as illustrated by the Bland-Altman plot shows a bias of 0.0023 (SD 0.0208) and narrow limits of agreement (LOA): Upper LOA 0.0573 and Lower LOA - 0.0528. The area under curve (AUC) was 0.996. QFR values generated from automatic TFC are comparable to those generated from manual TFC in diagnostic capability. The most recent software update produces values equivalent to those of the previous manual option, and can therefore be used interchangeably.


Subject(s)
Coronary Artery Disease , Fractional Flow Reserve, Myocardial , Humans , Predictive Value of Tests , Area Under Curve , Coronary Angiography , Coronary Artery Disease/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...