Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
bioRxiv ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38854054

ABSTRACT

As epigenetic clocks have evolved from powerful estimators of chronological aging to predictors of mortality and disease risk, it begs the question of what role DNA methylation plays in the aging process. We hypothesize that while it has the potential to serve as an informative biomarker, DNA methylation could also be a key to understanding the biology entangled between aging, (de)differentiation, and epigenetic reprogramming. Here we use an unsupervised approach to analyze time associated DNA methylation from both in vivo and in vitro samples to measure an underlying signal that ties these phenomena together. We identify a methylation pattern shared across all three, as well as a signal that tracks aging in tissues but appears refractory to reprogramming, suggesting that aging and reprogramming may not be fully mirrored processes.

2.
Geroscience ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38736015

ABSTRACT

Stochastic epigenetic mutations (SEMs) have been proposed as novel aging biomarkers to capture heterogeneity in age-related DNA methylation changes. SEMs are defined as outlier methylation patterns at cytosine-guanine dinucleotide sites, categorized as hypermethylated (hyperSEM) or hypomethylated (hypoSEM) relative to a reference. Because SEMs are defined by their outlier status, it is critical to differentiate extreme values due to technical noise or data artifacts from those due to real biology. Using technical replicate data, we found SEM detection is not reliable: across 3 datasets, 24 to 39% of hypoSEM and 46 to 67% of hyperSEM are not shared between replicates. We identified factors influencing SEM reliability-including blood cell type composition, probe beta-value statistics, genomic location, and presence of SNPs. We used these factors in a training dataset to build a machine learning-based filter that removes unreliable SEMs, and found this filter enhances reliability in two independent validation datasets. We assessed associations between SEM loads and aging phenotypes in the Framingham Heart Study and discovered that associations with aging outcomes were in large part driven by hypoSEMs at baseline methylated probes and hyperSEMs at baseline unmethylated probes, which are the same subsets that demonstrate highest technical reliability. These aging associations were preserved after filtering out unreliable SEMs and were enhanced after adjusting for blood cell composition. Finally, we utilized these insights to formulate best practices for SEM detection and introduce a novel R package, SEMdetectR, which uses parallel programming for efficient SEM detection with comprehensive options for detection, filtering, and analysis.

3.
bioRxiv ; 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38645168

ABSTRACT

Studies of the aging transcriptome focus on genes that change with age. But what can we learn from age-invariant genes-those that remain unchanged throughout the aging process? These genes also have a practical application: they serve as reference genes (often called housekeeping genes) in expression studies. Reference genes have mostly been identified and validated in young organisms, and no systematic investigation has been done across the lifespan. Here, we build upon a common pipeline for identifying reference genes in RNA-seq datasets to identify age-invariant genes across seventeen C57BL/6 mouse tissues (brain, lung, bone marrow, muscle, white blood cells, heart, small intestine, kidney, liver, pancreas, skin, brown, gonadal, marrow, and subcutaneous adipose tissue) spanning 1 to 21+ months of age. We identify 9 pan-tissue age-invariant genes and many tissue-specific age-invariant genes. These genes are stable across the lifespan and are validated in independent bulk RNA-seq datasets and RT-qPCR. We find age-invariant genes have shorter transcripts on average and are enriched for CpG islands. Interestingly, pathway enrichment analysis for age-invariant genes identifies an overrepresentation of molecular functions associated with some, but not all, hallmarks of aging. Thus, though hallmarks of aging typically involve changes in cell maintenance mechanisms, select genes associated with these hallmarks resist fluctuations in expression with age. Finally, our analysis concludes no classical reference gene is appropriate for aging studies in all tissues. Instead, we provide tissue-specific and pan-tissue genes for assays utilizing reference gene normalization (i.e., RT-qPCR) that can be applied to animals across the lifespan.

4.
Nat Commun ; 15(1): 1309, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378685

ABSTRACT

In mice, periodic cycles of a fasting mimicking diet (FMD) protect normal cells while killing damaged cells including cancer and autoimmune cells, reduce inflammation, promote multi-system regeneration, and extend longevity. Here, we performed secondary and exploratory analysis of blood samples from a randomized clinical trial (NCT02158897) and show that 3 FMD cycles in adult study participants are associated with reduced insulin resistance and other pre-diabetes markers, lower hepatic fat (as determined by magnetic resonance imaging) and increased lymphoid to myeloid ratio: an indicator of immune system age. Based on a validated measure of biological age predictive of morbidity and mortality, 3 FMD cycles were associated with a decrease of 2.5 years in median biological age, independent of weight loss. Nearly identical findings resulted from  a second clinical study (NCT04150159). Together these results provide initial support for beneficial effects of the FMD on multiple cardiometabolic risk factors and biomarkers of biological age.


Subject(s)
Diet , Fasting , Adult , Humans , Animals , Mice , Child, Preschool , Longevity , Liver/diagnostic imaging , Causality
5.
Sci Adv ; 9(29): eadf4163, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37467337

ABSTRACT

Aging is a leading risk factor for cancer. While it is proposed that age-related accumulation of somatic mutations drives this relationship, it is likely not the full story. We show that aging and cancer share a common epigenetic replication signature, which we modeled using DNA methylation from extensively passaged immortalized human cells in vitro and tested on clinical tissues. This signature, termed CellDRIFT, increased with age across multiple tissues, distinguished tumor from normal tissue, was escalated in normal breast tissue from cancer patients, and was transiently reset upon reprogramming. In addition, within-person tissue differences were correlated with predicted lifetime tissue-specific stem cell divisions and tissue-specific cancer risk. Our findings suggest that age-related replication may drive epigenetic changes in cells and could push them toward a more tumorigenic state.


Subject(s)
Epigenome , Neoplasms , Humans , Neoplasms/genetics , Neoplasms/pathology , Epigenesis, Genetic , Aging/genetics , Risk Factors
6.
bioRxiv ; 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37503069

ABSTRACT

Individuals, organs, tissues, and cells age in diverse ways throughout the lifespan. Epigenetic clocks attempt to quantify differential aging between individuals, but they typically summarize aging as a single measure, ignoring within-person heterogeneity. Our aim was to develop novel systems-based methylation clocks that, when assessed in blood, capture aging in distinct physiological systems. We combined supervised and unsupervised machine learning methods to link DNA methylation, system-specific clinical chemistry and functional measures, and mortality risk. This yielded a panel of 11 system-specific scores- Heart, Lung, Kidney, Liver, Brain, Immune, Inflammatory, Blood, Musculoskeletal, Hormone, and Metabolic. Each system score predicted a wide variety of outcomes, aging phenotypes, and conditions specific to the respective system, and often did so more strongly than existing epigenetic clocks that report single global measures. We also combined the system scores into a composite Systems Age clock that is predictive of aging across physiological systems in an unbiased manner. Finally, we showed that the system scores clustered individuals into unique aging subtypes that had different patterns of age-related disease and decline. Overall, our biological systems based epigenetic framework captures aging in multiple physiological systems using a single blood draw and assay and may inform the development of more personalized clinical approaches for improving age-related quality of life.

7.
Psychoneuroendocrinology ; 155: 106322, 2023 09.
Article in English | MEDLINE | ID: mdl-37423094

ABSTRACT

Stress triggers anticipatory physiological responses that promote survival, a phenomenon termed allostasis. However, the chronic activation of energy-dependent allostatic responses results in allostatic load, a dysregulated state that predicts functional decline, accelerates aging, and increases mortality in humans. The energetic cost and cellular basis for the damaging effects of allostatic load have not been defined. Here, by longitudinally profiling three unrelated primary human fibroblast lines across their lifespan, we find that chronic glucocorticoid exposure increases cellular energy expenditure by ∼60%, along with a metabolic shift from glycolysis to mitochondrial oxidative phosphorylation (OxPhos). This state of stress-induced hypermetabolism is linked to mtDNA instability, non-linearly affects age-related cytokines secretion, and accelerates cellular aging based on DNA methylation clocks, telomere shortening rate, and reduced lifespan. Pharmacologically normalizing OxPhos activity while further increasing energy expenditure exacerbates the accelerated aging phenotype, pointing to total energy expenditure as a potential driver of aging dynamics. Together, our findings define bioenergetic and multi-omic recalibrations of stress adaptation, underscoring increased energy expenditure and accelerated cellular aging as interrelated features of cellular allostatic load.


Subject(s)
Allostasis , Humans , Allostasis/physiology , Aging/physiology , Adaptation, Physiological/physiology , Cellular Senescence , Energy Metabolism
8.
J Gerontol A Biol Sci Med Sci ; 78(10): 1771-1777, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37246648

ABSTRACT

Frailty is characterized by increased vulnerability to disability and high risk for mortality in older adults. Identification of factors that contribute to frailty resilience is an important step in the development of effective therapies that protect against frailty. First, a reliable quantification of frailty resilience is needed. We developed a novel measure of frailty resilience, the Frailty Resilience Score (FRS), that integrates frailty genetic risk, age, and sex. Application of FRS to the LonGenity cohort (n = 467, mean age 74.4) demonstrated its validity compared to phenotypic frailty and its utility as a reliable predictor of overall survival. In a multivariable-adjusted analysis, 1-standard deviation increase in FRS predicted a 38% reduction in the hazard of mortality, independent of baseline frailty (p < .001). Additionally, FRS was used to identify a proteomic profile of frailty resilience. FRS was shown to be a reliable measure of frailty resilience that can be applied to biological studies of resilience.


Subject(s)
Frailty , Humans , Aged , Frail Elderly , Proteomics , Risk Factors
9.
Proc Natl Acad Sci U S A ; 120(9): e2215840120, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36802439

ABSTRACT

Biomarkers developed from DNA methylation (DNAm) data are of growing interest as predictors of health outcomes and mortality in older populations. However, it is unknown how epigenetic aging fits within the context of known socioeconomic and behavioral associations with aging-related health outcomes in a large, population-based, and diverse sample. This study uses data from a representative, panel study of US older adults to examine the relationship between DNAm-based age acceleration measures in the prediction of cross-sectional and longitudinal health outcomes and mortality. We examine whether recent improvements to these scores, using principal component (PC)-based measures designed to remove some of the technical noise and unreliability in measurement, improve the predictive capability of these measures. We also examine how well DNAm-based measures perform against well-known predictors of health outcomes such as demographics, SES, and health behaviors. In our sample, age acceleration calculated using "second and third generation clocks," PhenoAge, GrimAge, and DunedinPACE, is consistently a significant predictor of health outcomes including cross-sectional cognitive dysfunction, functional limitations and chronic conditions assessed 2 y after DNAm measurement, and 4-y mortality. PC-based epigenetic age acceleration measures do not significantly change the relationship of DNAm-based age acceleration measures to health outcomes or mortality compared to earlier versions of these measures. While the usefulness of DNAm-based age acceleration as a predictor of later life health outcomes is quite clear, other factors such as demographics, SES, mental health, and health behaviors remain equally, if not more robust, predictors of later life outcomes.


Subject(s)
Aging , Epigenesis, Genetic , Humans , Aged , Cross-Sectional Studies , Aging/genetics , DNA Methylation , Biomarkers , Acceleration
10.
Commun Biol ; 6(1): 22, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36635485

ABSTRACT

Patients with primary mitochondrial oxidative phosphorylation (OxPhos) defects present with fatigue and multi-system disorders, are often lean, and die prematurely, but the mechanistic basis for this clinical picture remains unclear. By integrating data from 17 cohorts of patients with mitochondrial diseases (n = 690) we find evidence that these disorders increase resting energy expenditure, a state termed hypermetabolism. We examine this phenomenon longitudinally in patient-derived fibroblasts from multiple donors. Genetically or pharmacologically disrupting OxPhos approximately doubles cellular energy expenditure. This cell-autonomous state of hypermetabolism occurs despite near-normal OxPhos coupling efficiency, excluding uncoupling as a general mechanism. Instead, hypermetabolism is associated with mitochondrial DNA instability, activation of the integrated stress response (ISR), and increased extracellular secretion of age-related cytokines and metabokines including GDF15. In parallel, OxPhos defects accelerate telomere erosion and epigenetic aging per cell division, consistent with evidence that excess energy expenditure accelerates biological aging. To explore potential mechanisms for these effects, we generate a longitudinal RNASeq and DNA methylation resource dataset, which reveals conserved, energetically demanding, genome-wide recalibrations. Taken together, these findings highlight the need to understand how OxPhos defects influence the energetic cost of living, and the link between hypermetabolism and aging in cells and patients with mitochondrial diseases.


Subject(s)
Mitochondrial Diseases , Oxidative Phosphorylation , Humans , Longevity , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mitochondria/genetics , Mitochondria/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism
11.
Nat Rev Genet ; 24(2): 72, 2023 02.
Article in English | MEDLINE | ID: mdl-36460811
12.
bioRxiv ; 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38168247

ABSTRACT

Stochastic Epigenetic Mutations (SEMs) have been proposed as novel aging biomarkers that have the potential to capture heterogeneity in age-related DNA methylation (DNAme) changes. SEMs are defined as outlier methylation patterns at cytosine-guanine dinucleotide (CpG) sites, categorized as hypermethylated (hyperSEM) or hypomethylated (hypoSEM) relative to a reference. While individual SEMs are rarely consistent across subjects, the SEM load - the total number of SEMs - increases with age. However, given poor technical reliability of measurement for many DNA methylation sites, we posited that many outliers might represent technical noise. Our study of whole blood samples from 36 individuals, each measured twice, found that 23.3% of hypoSEM and 45.6% hyperSEM are not shared between replicates. This diminishes the reliability of SEM loads, where intraclass correlation coefficients are 0.96 for hypoSEM and 0.90 for hyperSEM. We linked SEM reliability to multiple factors, including blood cell type composition, probe beta-value statistics, and presence of SNPs. A machine learning approach, leveraging these factors, filtered unreliable SEMs, enhancing reliability in a separate dataset of technical replicates from 128 individuals. Analysis of the Framingham Heart Study confirmed previously reported SEM association with mortality and revealed novel connections to cardiovascular disease. We discover that associations with aging outcomes are primarily driven by hypoSEMs at baseline methylated probes and hyperSEMs at baseline unmethylated probes, which are the same subsets that demonstrate highest technical reliability. These aging associations are preserved after filtering out unreliable SEMs and are enhanced after adjusting for blood cell composition. Finally, we utilize these insights to formulate best practices for SEM detection and introduce a novel R package, SEMdetectR, which utilizes parallel programming for efficient SEM detection with comprehensive options for detection, filtering, and analysis.

13.
Sci Data ; 9(1): 751, 2022 12 03.
Article in English | MEDLINE | ID: mdl-36463290

ABSTRACT

Aging is a process of progressive change. To develop biological models of aging, longitudinal datasets with high temporal resolution are needed. Here we report a multi-omics longitudinal dataset for cultured primary human fibroblasts measured across their replicative lifespans. Fibroblasts were sourced from both healthy donors (n = 6) and individuals with lifespan-shortening mitochondrial disease (n = 3). The dataset includes cytological, bioenergetic, DNA methylation, gene expression, secreted proteins, mitochondrial DNA copy number and mutations, cell-free DNA, telomere length, and whole-genome sequencing data. This dataset enables the bridging of mechanistic processes of aging as outlined by the "hallmarks of aging", with the descriptive characterization of aging such as epigenetic age clocks. Here we focus on bridging the gap for the hallmark mitochondrial metabolism. Our dataset includes measurement of healthy cells, and cells subjected to over a dozen experimental manipulations targeting oxidative phosphorylation (OxPhos), glycolysis, and glucocorticoid signaling, among others. These experiments provide opportunities to test how cellular energetics affect the biology of cellular aging. All data are publicly available at our webtool: https://columbia-picard.shinyapps.io/shinyapp-Lifespan_Study/.


Subject(s)
Aging , Fibroblasts , Humans , Longevity , Cellular Senescence , Glycolysis
14.
Nat Aging ; 2(7): 644-661, 2022 07.
Article in English | MEDLINE | ID: mdl-36277076

ABSTRACT

Epigenetic clocks are widely used aging biomarkers calculated from DNA methylation data, but this data can be surprisingly unreliable. Here we show technical noise produces deviations up to 9 years between replicates for six prominent epigenetic clocks, limiting their utility. We present a computational solution to bolster reliability, calculating principal components from CpG-level data as input for biological age prediction. Our retrained principal-component versions of six clocks show agreement between most replicates within 1.5 years, improved detection of clock associations and intervention effects, and reliable longitudinal trajectories in vivo and in vitro. This method entails only one additional step compared to traditional clocks, requires no replicates or prior knowledge of CpG reliabilities for training, and can be applied to any existing or future epigenetic biomarker. The high reliability of principal component-based clocks is critical for applications to personalized medicine, longitudinal tracking, in vitro studies, and clinical trials of aging interventions.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Reproducibility of Results , DNA Methylation/genetics , Epigenomics
15.
EClinicalMedicine ; 51: 101548, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35844770

ABSTRACT

Background: Accelerated aging leads to increasing burdens of chronic diseases in late life, posing a huge challenge to the society. With two well-developed aging measures (i.e., physiological dysregulation [PD] and frailty index [FI]), this study aimed to evaluate the relative contributions of life course circumstances (e.g., childhood and adulthood socioeconomic status) to variance in aging. Methods: We assembled data for 6224 middle-aged and older adults in China from the 2014 life course survey (June to December 2014), the 2015 biomarker collection (July 2015 to January 2016), and the 2015 main survey (July 2015 to January 2016) of the China Health and Retirement Longitudinal Study. Two aging measures (PD and FI) were calculated, with a higher value indicating more accelerated aging. Life course circumstances included childhood (i.e., socioeconomic status, war, health, trauma, relationship, and parents' health) and adulthood circumstances (i.e., socioeconomic status, adversity, and social support), demographics, and behaviours. The Shapley value decomposition, hierarchical clustering, and general linear regression models were performed. Findings: The Shapley value decomposition revealed that all included life course circumstances accounted for about 6·3% and 29·7% of variance in PD and FI, respectively. We identified six subpopulations who shared similar patterns in terms of childhood and adulthood circumstances. The most disadvantaged subpopulation (i.e., subpopulation 6 [more childhood trauma and adulthood adversity]) consistently exhibited accelerated aging indicated by the two aging measures. Relative to the most advantaged subpopulation (i.e., subpopulation 1 [less childhood trauma and adulthood adversity]), PD and FI in the most disadvantaged subpopulation were increased by an average of 0·14 (i.e., coefficient, by one-standard deviation, 95% confidence interval [CI] 0·06-0·21; p < 0·0001) and 0·10 (by one-point, 95% CI 0·09-0·11; p < 0·0001), respectively. Interpretation: Our findings highlight the different contributions of life course circumstances to phenotypic and functional aging. Special attention should be given to promoting health for the disadvantaged subpopulation and narrowing their health gap with advantaged counterparts. Funding: National Natural Science Foundation of China, Milstein Medical Asian American Partnership Foundation, Natural Science Foundation of Zhejiang Province, Fundamental Research Funds for the Central Universities, National Institute on Aging, National Centre for Advancing Translational Sciences, and Yale Alzheimer's Disease Research Centre.

16.
Aging (Albany NY) ; 14(14): 5641-5668, 2022 07 30.
Article in English | MEDLINE | ID: mdl-35907208

ABSTRACT

Alzheimer's disease (AD) risk increases exponentially with age and is associated with multiple molecular hallmarks of aging, one of which is epigenetic alterations. Epigenetic age predictors based on 5' cytosine methylation (DNAm), or epigenetic clocks, have previously suggested that epigenetic age acceleration may occur in AD brain tissue. Epigenetic clocks are promising tools for the quantification of biological aging, yet we hypothesize that investigation of brain aging in AD will be assisted by the development of brain-specific epigenetic clocks. Therefore, we generated a novel age predictor termed PCBrainAge that was trained solely in cortical samples. This predictor utilizes a combination of principal components analysis and regularized regression, which reduces technical noise and greatly improves test-retest reliability. To characterize the scope of PCBrainAge's utility, we generated DNAm data from multiple brain regions in a sample from the Religious Orders Study and Rush Memory and Aging Project. PCBrainAge captures meaningful heterogeneity of aging: Its acceleration demonstrates stronger associations with clinical AD dementia, pathologic AD, and APOE ε4 carrier status compared to extant epigenetic age predictors. It further does so across multiple cortical and subcortical regions. Overall, PCBrainAge's increased reliability and specificity makes it a particularly promising tool for investigating heterogeneity in brain aging, as well as epigenetic alterations underlying AD risk and resilience.


Subject(s)
Alzheimer Disease , Aging/genetics , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Brain/pathology , DNA Methylation , Epigenesis, Genetic , Humans , Reproducibility of Results
17.
Front Genet ; 13: 819749, 2022.
Article in English | MEDLINE | ID: mdl-35719387

ABSTRACT

The host epigenetic landscape rapidly changes during SARS-CoV-2 infection, and evidence suggest that severe COVID-19 is associated with durable scars to the epigenome. Specifically, aberrant DNA methylation changes in immune cells and alterations to epigenetic clocks in blood relate to severe COVID-19. However, a longitudinal assessment of DNA methylation states and epigenetic clocks in blood from healthy individuals prior to and following test-confirmed non-hospitalized COVID-19 has not been performed. Moreover, the impact of mRNA COVID-19 vaccines upon the host epigenome remains understudied. Here, we first examined DNA methylation states in the blood of 21 participants prior to and following test-confirmed COVID-19 diagnosis at a median time frame of 8.35 weeks; 756 CpGs were identified as differentially methylated following COVID-19 diagnosis in blood at an FDR adjusted p-value < 0.05. These CpGs were enriched in the gene body, and the northern and southern shelf regions of genes involved in metabolic pathways. Integrative analysis revealed overlap among genes identified in transcriptional SARS-CoV-2 infection datasets. Principal component-based epigenetic clock estimates of PhenoAge and GrimAge significantly increased in people over 50 following infection by an average of 2.1 and 0.84 years. In contrast, PCPhenoAge significantly decreased in people fewer than 50 following infection by an average of 2.06 years. This observed divergence in epigenetic clocks following COVID-19 was related to age and immune cell-type compositional changes in CD4+ T cells, B cells, granulocytes, plasmablasts, exhausted T cells, and naïve T cells. Complementary longitudinal epigenetic clock analyses of 36 participants prior to and following Pfizer and Moderna mRNA-based COVID-19 vaccination revealed that vaccination significantly reduced principal component-based Horvath epigenetic clock estimates in people over 50 by an average of 3.91 years for those who received Moderna. This reduction in epigenetic clock estimates was significantly related to chronological age and immune cell-type compositional changes in B cells and plasmablasts pre- and post-vaccination. These findings suggest the potential utility of epigenetic clocks as a biomarker of COVID-19 vaccine responses. Future research will need to unravel the significance and durability of short-term changes in epigenetic age related to COVID-19 exposure and mRNA vaccination.

18.
Ann N Y Acad Sci ; 1515(1): 208-218, 2022 09.
Article in English | MEDLINE | ID: mdl-35725988

ABSTRACT

The complex relationship between life course traumas and cardiovascular disease (CVD) and the underpinning pathways are poorly understood. We aimed to (1) examine the associations of three separate assessments including childhood, adulthood (after 16 years of age), and lifetime traumas (childhood or adulthood) with CVD; (2) examine the associations between diverse life course traumatic profiles and CVD; and (3) examine the extent to which PhenoAge, a well-developed phenotypic aging measure, mediated these associations. Using data from 104,939 participants from the UK Biobank, we demonstrate that subgroups of childhood, adulthood, and lifetime traumas were associated with CVD. Furthermore, life course traumatic profiles were significantly associated with CVD. For instance, compared with the subgroup experiencing nonsevere traumas across life course, those who experienced nonsevere childhood and severe adulthood traumas, severe childhood and nonsevere adulthood traumas, or severe traumas across life course had significantly higher odds of CVD (odds ratios: 1.07-1.33). Formal mediation analyses suggested that phenotypic aging partially mediated the above associations. These findings suggest a potential pathway from life course traumas to CVD through phenotypic aging, and underscore the importance of policy programs targeting traumas over the life course in ameliorating inequalities in cardiovascular health.


Subject(s)
Cardiovascular Diseases , Life Change Events , Adult , Aging , Cardiovascular Diseases/epidemiology , Humans , Risk Factors
19.
iScience ; 25(5): 104199, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35494229

ABSTRACT

Aging research is unparalleled in the breadth of disciplines it encompasses, from evolutionary studies examining the forces that shape aging to molecular studies uncovering the underlying mechanisms of age-related functional decline. Despite a common focus to advance our understanding of aging, these disciplines have proceeded along distinct paths with little cross-talk. We propose that the concept of resilience can bridge this gap. Resilience describes the ability of a system to respond to perturbations by returning to its original state. Although resilience has been applied in a few individual disciplines in aging research such as frailty and cognitive decline, it has not been explored as a unifying conceptual framework that is able to connect distinct research fields. We argue that because a resilience-based framework can cross broad physiological levels and time scales it can provide the missing links that connect these diverse disciplines. The resulting framework will facilitate predictive modeling and validation and influence targets and directions in research on the biology of aging.

20.
Clin Epigenetics ; 14(1): 30, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35209953

ABSTRACT

PURPOSE: Age is one of the strongest risk factors for the development of breast cancer, however, the underlying etiology linking age and breast cancer remains unclear. We have previously observed links between epigenetic aging signatures in breast/tumor tissue and breast cancer risk/prevalence. However, these DNA methylation-based aging biomarkers capture diverse epigenetic phenomena and it is not known to what degree they relate to breast cancer risk, and/or progression. METHODS: Using six epigenetic clocks, we analyzed whether they distinguish normal breast tissue adjacent to tumor (cases) vs normal breast tissue from healthy controls (controls). RESULTS: The Levine (p = 0.0037) and Yang clocks (p = 0.023) showed significant epigenetic age acceleration in cases vs controls in breast tissue. We observed that much of the difference between cases and controls is driven by CpGs associated with polycomb-related genes. Thus, we developed a new score utilizing only CpGs associated with polycomb-related genes and demonstrated that it robustly captured epigenetic age acceleration in cases vs controls (p = 0.00012). Finally, we tested whether this same signal could be seen in peripheral blood. We observed no difference in cases vs. controls and no correlation between matched tissue/blood samples, suggesting that peripheral blood is not a good surrogate marker for epigenetic age acceleration. CONCLUSIONS: Moving forward, it will be critical for studies to elucidate whether epigenetic age acceleration in breast tissue precedes breast cancer diagnosis and whether methylation changes at CpGs associated with polycomb-related genes can be used to assess the risk of developing breast cancer among unaffected individuals.


Subject(s)
Breast Neoplasms , Aging/genetics , Breast Neoplasms/genetics , DNA Methylation , Epigenesis, Genetic , Epigenomics , Female , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...