Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38948874

ABSTRACT

Gene therapies have the potential to treat disease by delivering therapeutic genetic cargo to disease-associated cells. One limitation to their widespread use is the lack of short regulatory sequences, or promoters, that differentially induce the expression of delivered genetic cargo in target cells, minimizing side effects in other cell types. Such cell-type-specific promoters are difficult to discover using existing methods, requiring either manual curation or access to large datasets of promoter-driven expression from both targeted and untargeted cells. Model-based optimization (MBO) has emerged as an effective method to design biological sequences in an automated manner, and has recently been used in promoter design methods. However, these methods have only been tested using large training datasets that are expensive to collect, and focus on designing promoters for markedly different cell types, overlooking the complexities associated with designing promoters for closely related cell types that share similar regulatory features. Therefore, we introduce a comprehensive framework for utilizing MBO to design promoters in a data-efficient manner, with an emphasis on discovering promoters for similar cell types. We use conservative objective models (COMs) for MBO and highlight practical considerations such as best practices for improving sequence diversity, getting estimates of model uncertainty, and choosing the optimal set of sequences for experimental validation. Using three relatively similar blood cancer cell lines (Jurkat, K562, and THP1), we show that our approach discovers many novel cell-type-specific promoters after experimentally validating the designed sequences. For K562 cells, in particular, we discover a promoter that has 75.85% higher cell-type-specificity than the best promoter from the initial dataset used to train our models.

2.
bioRxiv ; 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36909524

ABSTRACT

Advances in gene delivery technologies are enabling rapid progress in molecular medicine, but require precise expression of genetic cargo in desired cell types, which is predominantly achieved via a regulatory DNA sequence called a promoter; however, only a handful of cell type-specific promoters are known. Efficiently designing compact promoter sequences with a high density of regulatory information by leveraging machine learning models would therefore be broadly impactful for fundamental research and direct therapeutic applications. However, models of expression from such compact promoter sequences are lacking, despite the recent success of deep learning in modelling expression from endogenous regulatory sequences. Despite the lack of large datasets measuring promoter-driven expression in many cell types, data from a few well-studied cell types or from endogenous gene expression may provide relevant information for transfer learning, which has not yet been explored in this setting. Here, we evaluate a variety of pretraining tasks and transfer strategies for modelling cell type-specific expression from compact promoters and demonstrate the effectiveness of pretraining on existing promoter-driven expression datasets from other cell types. Our approach is broadly applicable for modelling promoter-driven expression in any data-limited cell type of interest, and will enable the use of model-based optimization techniques for promoter design for gene delivery applications. Our code and data are available at https://github.com/anikethjr/promoter_models.

3.
Philos Trans R Soc Lond B Biol Sci ; 378(1869): 20210447, 2023 01 30.
Article in English | MEDLINE | ID: mdl-36511408

ABSTRACT

Navigation is one of the most heavily studied problems in robotics and is conventionally approached as a geometric mapping and planning problem. However, real-world navigation presents a complex set of physical challenges that defies simple geometric abstractions. Machine learning offers a promising way to go beyond geometry and conventional planning, allowing for navigational systems that make decisions based on actual prior experience. Such systems can reason about traversability in ways that go beyond geometry, accounting for the physical outcomes of their actions and exploiting patterns in real-world environments. They can also improve as more data is collected, potentially providing a powerful network effect. In this article, we present a general toolkit for experiential learning of robotic navigation skills that unifies several recent approaches, describe the underlying design principles, summarize experimental results from several of our recent papers, and discuss open problems and directions for future work. This article is part of the theme issue 'New approaches to 3D vision'.


Subject(s)
Robotics , Robotics/methods , Machine Learning
4.
J Neuroeng Rehabil ; 18(1): 126, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34399772

ABSTRACT

Modeling human motor control and predicting how humans will move in novel environments is a grand scientific challenge. Researchers in the fields of biomechanics and motor control have proposed and evaluated motor control models via neuromechanical simulations, which produce physically correct motions of a musculoskeletal model. Typically, researchers have developed control models that encode physiologically plausible motor control hypotheses and compared the resulting simulation behaviors to measurable human motion data. While such plausible control models were able to simulate and explain many basic locomotion behaviors (e.g. walking, running, and climbing stairs), modeling higher layer controls (e.g. processing environment cues, planning long-term motion strategies, and coordinating basic motor skills to navigate in dynamic and complex environments) remains a challenge. Recent advances in deep reinforcement learning lay a foundation for modeling these complex control processes and controlling a diverse repertoire of human movement; however, reinforcement learning has been rarely applied in neuromechanical simulation to model human control. In this paper, we review the current state of neuromechanical simulations, along with the fundamentals of reinforcement learning, as it applies to human locomotion. We also present a scientific competition and accompanying software platform, which we have organized to accelerate the use of reinforcement learning in neuromechanical simulations. This "Learn to Move" competition was an official competition at the NeurIPS conference from 2017 to 2019 and attracted over 1300 teams from around the world. Top teams adapted state-of-the-art deep reinforcement learning techniques and produced motions, such as quick turning and walk-to-stand transitions, that have not been demonstrated before in neuromechanical simulations without utilizing reference motion data. We close with a discussion of future opportunities at the intersection of human movement simulation and reinforcement learning and our plans to extend the Learn to Move competition to further facilitate interdisciplinary collaboration in modeling human motor control for biomechanics and rehabilitation research.


Subject(s)
Locomotion , Reinforcement, Psychology , Biomechanical Phenomena , Computer Simulation , Humans , Walking
SELECTION OF CITATIONS
SEARCH DETAIL
...