Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Sensors (Basel) ; 24(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732996

ABSTRACT

X-ray nanotomography is a powerful tool for the characterization of nanoscale materials and structures, but it is difficult to implement due to the competing requirements of X-ray flux and spot size. Due to this constraint, state-of-the-art nanotomography is predominantly performed at large synchrotron facilities. We present a laboratory-scale nanotomography instrument that achieves nanoscale spatial resolution while addressing the limitations of conventional tomography tools. The instrument combines the electron beam of a scanning electron microscope (SEM) with the precise, broadband X-ray detection of a superconducting transition-edge sensor (TES) microcalorimeter. The electron beam generates a highly focused X-ray spot on a metal target held micrometers away from the sample of interest, while the TES spectrometer isolates target photons with a high signal-to-noise ratio. This combination of a focused X-ray spot, energy-resolved X-ray detection, and unique system geometry enables nanoscale, element-specific X-ray imaging in a compact footprint. The proof of concept for this approach to X-ray nanotomography is demonstrated by imaging 160 nm features in three dimensions in six layers of a Cu-SiO2 integrated circuit, and a path toward finer resolution and enhanced imaging capabilities is discussed.

2.
Aging Cell ; 23(7): e14153, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38520065

ABSTRACT

The APOE4 allele is recognized as a significant genetic risk factor to Alzheimer's disease (AD) and influences longevity. Nonetheless, some APOE4 carriers exhibit resistance to AD even in advanced age. Humanin, a mitochondrial-derived peptide comprising 24 amino acids, has variants linked to cognitive resilience and longevity. Our research uncovered a unique humanin variant, P3S, specifically enriched in centenarians with the APOE4 allele. Through in silico analyses and subsequent experimental validation, we demonstrated a strong affinity between humanin P3S and APOE4. Utilizing an APOE4-centric mouse model of amyloidosis (APP/PS1/APOE4), we observed that humanin P3S significantly attenuated brain amyloid-beta accumulation compared to the wild-type humanin. Transcriptomic assessments of mice treated with humanin P3S highlighted its potential mechanism involving the enhancement of amyloid beta phagocytosis. Additionally, in vitro studies corroborated humanin P3S's efficacy in promoting amyloid-beta clearance. Notably, in the temporal cortex of APOE4 carriers, humanin expression is correlated with genes associated with phagocytosis. Our findings suggest a role of the rare humanin variant P3S, especially prevalent among individuals of Ashkenazi descent, in mitigating amyloid beta pathology and facilitating phagocytosis in APOE4-linked amyloidosis, underscoring its significance in longevity and cognitive health among APOE4 carriers.


Subject(s)
Apolipoprotein E4 , Brain , Longevity , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Humans , Longevity/genetics , Mice , Animals , Brain/metabolism , Brain/pathology , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Mice, Transgenic , Amyloid beta-Peptides/metabolism , Male , Female , Aged, 80 and over , Heterozygote , Disease Models, Animal , Intracellular Signaling Peptides and Proteins
3.
Med ; 5(1): 90-101.e4, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38157848

ABSTRACT

BACKGROUND: Genome-wide association studies (GWASs) associate phenotypes and genetic variants across a study cohort. GWASs require large-scale cohorts with both phenotype and genetic sequencing data, limiting studied phenotypes. The Human Phenotype Project is a longitudinal study that has measured a wide range of clinical and biomolecular features from a self-assignment cohort over 5 years. The phenotypes collected are quantitative traits, providing higher-resolution insights into the genetics of complex phenotypes. METHODS: We present the results of GWASs and polygenic risk score phenome-wide association studies with 729 clinical phenotypes and 4,043 molecular features from the Human Phenotype Project. This includes clinical traits that have not been previously associated with genetics, including measures from continuous sleep monitoring, continuous glucose monitoring, liver ultrasound, hormonal status, and fundus imaging. FINDINGS: In GWAS of 8,706 individuals, we found significant associations between 169 clinical traits and 1,184 single-nucleotide polymorphisms. We found genes associated with both glycemic control and mental disorders, and we quantify the strength of genetic signals in serum metabolites. In polygenic risk score phenome-wide association studies for clinical traits, we found 16,047 significant associations. CONCLUSIONS: The entire set of findings, which we disseminate publicly, provides newfound resolution into the genetic architecture of complex human phenotypes. FUNDING: E.S. is supported by the Minerva foundation with funding from the Federal German Ministry for Education and Research and by the European Research Council and the Israel Science Foundation.


Subject(s)
Genetic Risk Score , Genome-Wide Association Study , Humans , Longitudinal Studies , Blood Glucose Self-Monitoring , Blood Glucose/genetics , Phenotype
4.
Opt Express ; 31(10): 15355-15371, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37157639

ABSTRACT

X-ray tomography is a non-destructive imaging technique that reveals the interior of an object from its projections at different angles. Under sparse-view and low-photon sampling, regularization priors are required to retrieve a high-fidelity reconstruction. Recently, deep learning has been used in X-ray tomography. The prior learned from training data replaces the general-purpose priors in iterative algorithms, achieving high-quality reconstructions with a neural network. Previous studies typically assume the noise statistics of test data are acquired a priori from training data, leaving the network susceptible to a change in the noise characteristics under practical imaging conditions. In this work, we propose a noise-resilient deep-reconstruction algorithm and apply it to integrated circuit tomography. By training the network with regularized reconstructions from a conventional algorithm, the learned prior shows strong noise resilience without the need for additional training with noisy examples, and allows us to obtain acceptable reconstructions with fewer photons in test data. The advantages of our framework may further enable low-photon tomographic imaging where long acquisition times limit the ability to acquire a large training set.

5.
Microsyst Nanoeng ; 9: 47, 2023.
Article in English | MEDLINE | ID: mdl-37064166

ABSTRACT

We show three-dimensional reconstructions of a region of an integrated circuit from a 130 nm copper process. The reconstructions employ x-ray computed tomography, measured with a new and innovative high-magnification x-ray microscope. The instrument uses a focused electron beam to generate x-rays in a 100 nm spot and energy-resolving x-ray detectors that minimize backgrounds and hold promise for the identification of materials within the sample. The x-ray generation target, a layer of platinum, is fabricated on the circuit wafer itself. A region of interest is imaged from a limited range of angles and without physically removing the region from the larger circuit. The reconstruction is consistent with the circuit's design file.

6.
Opt Express ; 31(3): 4899-4919, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36785446

ABSTRACT

Photon echoes in rare-earth-doped crystals are studied to understand the challenges of making broadband quantum memories using the atomic frequency comb (AFC) protocol in systems with hyperfine structure. The hyperfine structure of Pr3+ poses an obstacle to this goal because frequencies associated with the hyperfine transitions change the simple picture of modulation at an externally imposed frequency. The current work focuses on the intermediate case where the hyperfine spacing is comparable to the comb spacing, a challenging regime that has recently been considered. Operating in this regime may facilitate storing quantum information over a larger spectral range in such systems. In this work, we prepare broadband AFCs using optical combs with tooth spacings ranging from 1 MHz to 16 MHz in fine steps, and measure transmission spectra and photon echoes for each. We predict the spectra and echoes theoretically using the optical combs as input to either a rate equation code or a density matrix code, which calculates the redistribution of populations. We then use the redistributed populations as input to a semiclassical theory using the frequency-dependent dielectric function. The two sets of predictions each give a good, but different account of the photon echoes.

7.
Metrologia ; 60(2)2023.
Article in English | MEDLINE | ID: mdl-38379870

ABSTRACT

A technique for characterizing and correcting the linearity of radiometric instruments is known by the names the "flux-addition method" and the "combinatorial technique". In this paper, we develop a rigorous uncertainty quantification method for use with this technique and illustrate its use with both synthetic data and experimental data from a "beam conjoiner" instrument. We present a probabilistic model that relates the instrument readout to a set of unknown fluxes via a set of polynomial coefficients. Maximum likelihood estimates (MLEs) of the unknown fluxes and polynomial coefficients are recommended, while a non-parametric bootstrap algorithm enables uncertainty quantification including standard errors and confidence intervals. The synthetic data represent plausible outputs of a radiometric instrument and enable testing and validation of the method. The MLEs for these data are found to be approximately unbiased, and confidence intervals derived from the bootstrap replicates are found to be consistent with their target coverage of 95%. For the polynomial coefficients, the observed coverages range from 91% to 99%. The experimental data set illustrates how a complete calibration with uncertainties can be achieved using the method plus one well-known flux level. The uncertainty contribution attributable to estimation of the instrument's nonlinear response is less than 0.025% over most of its range.

8.
Opt Express ; 30(13): 23238-23259, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-36225009

ABSTRACT

X-ray tomography is capable of imaging the interior of objects in three dimensions non-invasively, with applications in biomedical imaging, materials science, electronic inspection, and other fields. The reconstruction process can be an ill-conditioned inverse problem, requiring regularization to obtain satisfactory results. Recently, deep learning has been adopted for tomographic reconstruction. Unlike iterative algorithms which require a distribution that is known a priori, deep reconstruction networks can learn a prior distribution through sampling the training distributions. In this work, we develop a Physics-assisted Generative Adversarial Network (PGAN), a two-step algorithm for tomographic reconstruction. In contrast to previous efforts, our PGAN utilizes maximum-likelihood estimates derived from the measurements to regularize the reconstruction with both known physics and the learned prior. Compared with methods with less physics assisting in training, PGAN can reduce the photon requirement with limited projection angles to achieve a given error rate. The advantages of using a physics-assisted learned prior in X-ray tomography may further enable low-photon nanoscale imaging.

9.
J R Soc Interface ; 19(190): 20210781, 2022 05.
Article in English | MEDLINE | ID: mdl-35506215

ABSTRACT

Face masks do not completely prevent transmission of respiratory infections, but masked individuals are likely to inhale fewer infectious particles. If smaller infectious doses tend to yield milder infections, yet ultimately induce similar levels of immunity, then masking could reduce the prevalence of severe disease even if the total number of infections is unaffected. It has been suggested that this effect of masking is analogous to the pre-vaccination practice of variolation for smallpox, whereby susceptible individuals were intentionally infected with small doses of live virus (and often acquired immunity without severe disease). We present a simple epidemiological model in which mask-induced variolation causes milder infections, potentially with lower transmission rate and/or different duration. We derive relationships between the effectiveness of mask-induced variolation and important epidemiological metrics (the basic reproduction number and initial epidemic growth rate, and the peak prevalence, attack rate and equilibrium prevalence of severe infections). We illustrate our results using parameter estimates for the original SARS-CoV-2 wild-type virus, as well as the Alpha, Delta and Omicron variants. Our results suggest that if variolation is a genuine side-effect of masking, then the importance of face masks as a tool for reducing healthcare burdens from COVID-19 may be under-appreciated.


Subject(s)
COVID-19 , Masks , COVID-19/epidemiology , COVID-19/prevention & control , Humans , SARS-CoV-2 , Vaccination
11.
J Phys Chem B ; 125(35): 9999-10008, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34459591

ABSTRACT

Improving adhesives for wet surfaces is an ongoing challenge. While the adhesive proteins of marine mussels have inspired many synthetic wet adhesives, the mechanisms of mussel adhesion are still not fully understood. Using surface forces apparatus (SFA) measurements and replica-exchange and umbrella-sampling molecular dynamics simulations, we probed the relationships between the sequence, structure, and adhesion of mussel-inspired peptides. Experimental and computational results reveal that peptides derived from mussel foot protein 3 slow (mfp-3s) containing 3,4-dihydroxyphenylalanine (Dopa), a post-translationally modified variant of tyrosine commonly found in mussel foot proteins, form adhesive monolayers on mica. In contrast, peptides with tyrosine adsorb as weakly adhesive clusters. We further considered simulations of mfp-3s derivatives on a range of hydrophobic and hydrophilic organic and inorganic surfaces (including silica, self-assembled monolayers, and a lipid bilayer) and demonstrated that the chemical character of the target surface and proximity of cationic and hydrophobic residues to Dopa affect peptide adsorption and adhesion. Collectively, our results suggest that conversion of tyrosine to Dopa in hydrophobic, sparsely charged peptides influences peptide self-association and ultimately dictates their adhesive performance.


Subject(s)
Bivalvia , Dihydroxyphenylalanine , Animals , Peptides , Proteins , Surface Properties
12.
Chem Sci ; 12(16): 5853-5864, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-34168810

ABSTRACT

Despite being relatively benign and not an indicative signature of toxicity, fibril formation and fibrillar structures continue to be key factors in assessing the structure-function relationship in protein aggregation diseases. The inability to capture molecular cross-talk among key players at the tissue level before fibril formation greatly accounts for the missing link toward the development of an efficacious therapeutic intervention for Type II diabetes mellitus (T2DM). We show that human α-calcitonin gene-related peptide (α-CGRP) remodeled amylin fibrillization. Furthermore, while CGRP and/or amylin monomers reduce the secretion of both mouse Ins1 and Ins2 proteins, CGRP oligomers have a reverse effect on Ins1. Genetically reduced Ins2, the orthologous version of human insulin, has been shown to enhance insulin sensitivity and extend the life-span in old female mice. Beyond the mechanistic insights, our data suggest that CGRP regulates insulin secretion and lowers the risk of T2DM. Our result rationalizes how migraine might be protective against T2DM. We envision the new paradigm of CGRP : amylin interactions as a pivotal aspect for T2DM diagnostics and therapeutics. Maintaining a low level of amylin while increasing the level of CGRP could become a viable approach toward T2DM prevention and treatment.

13.
Sci Rep ; 11(1): 7312, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33790315

ABSTRACT

The neuronal membrane-associated periodic spectrin skeleton (MPS) contributes to neuronal development, remodeling, and organization. Post-translational modifications impinge on spectrin, the major component of the MPS, but their role remains poorly understood. One modification targeting spectrin is cleavage by calpains, a family of calcium-activated proteases. Spectrin cleavage is regulated by activated calpain, but also by the calcium-dependent binding of calmodulin (CaM) to spectrin. The physiologic significance of this balance between calpain activation and substrate-level regulation of spectrin cleavage is unknown. We report a strain of C57BL/6J mice harboring a single αII spectrin point mutation (Sptan1 c.3293G > A:p.R1098Q) with reduced CaM affinity and intrinsically enhanced sensitivity to calpain proteolysis. Homozygotes are embryonic lethal. Newborn heterozygotes of either gender appear normal, but soon develop a progressive ataxia characterized biochemically by accelerated calpain-mediated spectrin cleavage and morphologically by disruption of axonal and dendritic integrity and global neurodegeneration. Molecular modeling predicts unconstrained exposure of the mutant spectrin's calpain-cleavage site. These results reveal the critical importance of substrate-level regulation of spectrin cleavage for the maintenance of neuronal integrity. Given that excessive activation of calpain proteases is a common feature of neurodegenerative disease and traumatic encephalopathy, we propose that damage to the spectrin MPS may contribute to the neuropathology of many disorders.


Subject(s)
Cerebellar Ataxia/genetics , Spectrin/genetics , Animals , Calpain/metabolism , Cerebellum/metabolism , Cerebellum/pathology , Mice , Mice, Inbred C57BL , Point Mutation , Protein Binding , Proteolysis , Spectrin/chemistry , Spectrin/metabolism
14.
Opt Express ; 29(2): 1788-1804, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33726385

ABSTRACT

A reconstruction algorithm for partially coherent x-ray computed tomography (XCT) including Fresnel diffraction is developed and applied to an optical fiber. The algorithm is applicable to a high-resolution tube-based laboratory-scale x-ray tomography instrument. The computing time is only a few times longer than the projective counterpart. The algorithm is used to reconstruct, with projections and diffraction, a tilt series acquired at the micrometer scale of a graded-index optical fiber using maximum likelihood and a Bayesian method based on the work of Bouman and Sauer. The inclusion of Fresnel diffraction removes some reconstruction artifacts and use of a Bayesian prior probability distribution removes others, resulting in a substantially more accurate reconstruction.

15.
J Phys Chem B ; 125(8): 1974-1996, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33464098

ABSTRACT

The loss of proteostasis over the life course is associated with a wide range of debilitating degenerative diseases and is a central hallmark of human aging. When left unchecked, proteins that are intrinsically disordered can pathologically aggregate into highly ordered fibrils, plaques, and tangles (termed amyloids), which are associated with countless disorders such as Alzheimer's disease, Parkinson's disease, type II diabetes, cancer, and even certain viral infections. However, despite significant advances in protein folding and solution biophysics techniques, determining the molecular cause of these conditions in humans has remained elusive. This has been due, in part, to recent discoveries showing that soluble protein oligomers, not insoluble fibrils or plaques, drive the majority of pathological processes. This has subsequently led researchers to focus instead on heterogeneous and often promiscuous protein oligomers. Unfortunately, significant gaps remain in how to prepare, model, experimentally corroborate, and extract amyloid oligomers relevant to human disease in a systematic manner. This Review will report on each of these techniques and their successes and shortcomings in an attempt to standardize comparisons between protein oligomers across disciplines, especially in the context of neurodegeneration. By standardizing multiple techniques and identifying their common overlap, a clearer picture of the soluble neuropathological aggresome can be constructed and used as a baseline for studying human disease and aging.


Subject(s)
Alzheimer Disease , Diabetes Mellitus, Type 2 , Amyloid , Amyloid beta-Peptides , Computer Simulation , Humans
16.
Article in English | MEDLINE | ID: mdl-35529769

ABSTRACT

Feature sizes in integrated circuits have decreased substantially over time, and it has become increasingly difficult to three-dimensionally image these complex circuits after fabrication. This can be important for process development, defect analysis, and detection of unexpected structures in externally sourced chips, among other applications. Here, we report on a non-destructive, tabletop approach that addresses this imaging problem through x-ray tomography, which we uniquely realize with an instrument that combines a scanning electron microscope (SEM) with a transition-edge sensor (TES) x-ray spectrometer. Our approach uses the highly focused SEM electron beam to generate a small x-ray generation region in a carefully designed target layer that is placed over the sample being tested. With the high collection efficiency and resolving power of a TES spectrometer, we can isolate x-rays generated in the target from background and trace their paths through regions of interest in the sample layers, providing information about the various materials along the x-ray paths through their attenuation functions. We have recently demonstrated our approach using a 240 Mo/Cu bilayer TES prototype instrument on a simplified test sample containing features with sizes of ∼ 1 µm. Currently, we are designing and building a 3000 Mo/Au bilayer TES spectrometer upgrade, which is expected to improve the imaging speed by factor of up to 60 through a combination of increased detector number and detector speed.

17.
Stereotact Funct Neurosurg ; 99(1): 38-39, 2021.
Article in English | MEDLINE | ID: mdl-33070142

ABSTRACT

There exist only two case reports to date of open cardiac defibrillation with deep brain stimulator system (DBS) implantation. We report a 64-year-old male with DBS system in place for essential tremor who underwent cardiac defibrillation after cardiac arrest. Afterwards, his device impedances were all high and his tremor symptoms returned. Both problems resolved with implantation of a new generator and required no changes to the intracranial leads or extension cables. This is significantly different from the two previous reports. One included a significantly different DBS system relying on transcutaneous RF transmission and reported a lesioning effect after cardioversion. The other utilized a modern DBS system but reported damage to the generator and intracranial leads. We report that only the generator sustained damage, and that there were no intracranial changes that occurred.


Subject(s)
Deep Brain Stimulation/adverse effects , Defibrillators/adverse effects , Electric Countershock/adverse effects , Equipment Failure , Essential Tremor/therapy , Deep Brain Stimulation/instrumentation , Electric Countershock/instrumentation , Essential Tremor/diagnosis , Humans , Male , Middle Aged
18.
Protein Sci ; 29(9): 1931-1944, 2020 09.
Article in English | MEDLINE | ID: mdl-32710566

ABSTRACT

The ability to consistently distinguish real protein structures from computationally generated model decoys is not yet a solved problem. One route to distinguish real protein structures from decoys is to delineate the important physical features that specify a real protein. For example, it has long been appreciated that the hydrophobic cores of proteins contribute significantly to their stability. We used two sources to obtain datasets of decoys to compare with real protein structures: submissions to the biennial Critical Assessment of protein Structure Prediction competition, in which researchers attempt to predict the structure of a protein only knowing its amino acid sequence, and also decoys generated by 3DRobot, which have user-specified global root-mean-squared deviations from experimentally determined structures. Our analysis revealed that both sets of decoys possess cores that do not recapitulate the key features that define real protein cores. In particular, the model structures appear more densely packed (because of energetically unfavorable atomic overlaps), contain too few residues in the core, and have improper distributions of hydrophobic residues throughout the structure. Based on these observations, we developed a feed-forward neural network, which incorporates key physical features of protein cores, to predict how well a computational model recapitulates the real protein structure without knowledge of the structure of the target sequence. By identifying the important features of protein structure, our method is able to rank decoy structures with similar accuracy to that obtained by state-of-the-art methods that incorporate many additional features. The small number of physical features makes our model interpretable, emphasizing the importance of protein packing and hydrophobicity in protein structure prediction.


Subject(s)
Algorithms , Computational Biology , Protein Folding , Proteins/chemistry , Protein Conformation
19.
Proteins ; 88(9): 1154-1161, 2020 09.
Article in English | MEDLINE | ID: mdl-32105366

ABSTRACT

There have been several studies suggesting that protein structures solved by NMR spectroscopy and X-ray crystallography show significant differences. To understand the origin of these differences, we assembled a database of high-quality protein structures solved by both methods. We also find significant differences between NMR and crystal structures-in the root-mean-square deviations of the C α atomic positions, identities of core amino acids, backbone, and side-chain dihedral angles, and packing fraction of core residues. In contrast to prior studies, we identify the physical basis for these differences by modeling protein cores as jammed packings of amino acid-shaped particles. We find that we can tune the jammed packing fraction by varying the degree of thermalization used to generate the packings. For an athermal protocol, we find that the average jammed packing fraction is identical to that observed in the cores of protein structures solved by X-ray crystallography. In contrast, highly thermalized packing-generation protocols yield jammed packing fractions that are even higher than those observed in NMR structures. These results indicate that thermalized systems can pack more densely than athermal systems, which suggests a physical basis for the structural differences between protein structures solved by NMR and X-ray crystallography.


Subject(s)
Amino Acids/chemistry , Crystallography, X-Ray/methods , Nuclear Magnetic Resonance, Biomolecular/methods , Proteins/chemistry , Amino Acid Sequence , Crystallization , Datasets as Topic , Protein Conformation , Proteins/ultrastructure , Solutions
20.
J Am Chem Soc ; 141(36): 14168-14179, 2019 09 11.
Article in English | MEDLINE | ID: mdl-31456396

ABSTRACT

Mitochondrially derived peptides (MDPs) such as humanin (HN) have shown a remarkable ability to modulate neurological amyloids and apoptosis-associated proteins in cells and animal models. Recently, we found that humanin-like peptides also inhibit amyloid formation outside of neural environments in islet amyloid polypeptide (IAPP) fibrils and plaques, which are hallmarks of Type II diabetes. However, the biochemical basis for regulating amyloids through endogenous MDPs remains elusive. One hypothesis is that MDPs stabilize intermediate amyloid oligomers and discourage the formation of insoluble fibrils. To test this hypothesis, we carried out simulations and experiments to extract the dominant interactions between the S14G-HN mutant (HNG) and a diverse set of IAPP structures. Replica-exchange molecular dynamics suggests that MDPs cap the growth of amyloid oligomers. Simulations also indicate that HNG-IAPP heterodimers are 10 times more stable than IAPP homodimers, which explains the substoichiometric ability of HNG to inhibit amyloid growth. Despite this strong attraction, HNG does not denature IAPP. Instead, HNG binds IAPP near the disordered NFGAIL motif, wedging itself between amyloidogenic fragments. Shielding of NFGAIL-flanking fragments reduces the formation of parallel IAPP ß-sheets and subsequent nucleation of mature amyloid fibrils. From ThT spectroscopy and electron microscopy, we found that HNG does not deconstruct mature IAPP fibrils and oligomers, consistent with the simulations and our proposed hypothesis. Taken together, this work provides new mechanistic insight into how endogenous MDPs regulate pathological amyloid growth at the molecular level and in highly substoichiometric quantities, which can be exploited through peptidomimetics in diabetes or Alzheimer's disease.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Islet Amyloid Polypeptide/metabolism , Mitochondria/chemistry , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Islet Amyloid Polypeptide/chemistry , Mitochondria/metabolism , Molecular Dynamics Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...