Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Orthop Sci ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38670825

ABSTRACT

BACKGROUND: Infusion catheters facilitate a controlled infusion of local anesthetic (LA) for pain control after surgery. However, their potential effects on healing fibroblasts are unspecified. METHODS: Rat synovial fibroblasts were cultured in 12-well plates. Dilutions were prepared in a solution containing reduced-serum media and 0.9% sodium chloride in 1:1 concentration. Each well was treated with 500 µl of the appropriate LA dilution or normal saline for 15- or 30-min. LA dilutions included: 0.5% ropivacaine HCl, 0.2% ropivacaine HCl, 1% lidocaine HCl and epinephrine 1:100,000, 1% lidocaine HCl, 0.5% bupivacaine HCl and epinephrine 1:200,000, and 0.5% bupivacaine HCl. This was replicated three times. Dilution of each LA whereby 50% of the cells were unviable (Lethal dose 50 [LD50]) was analyzed. RESULTS: LD50 was reached for lidocaine and bupivacaine, but not ropivacaine. Lidocaine 1% with epinephrine is toxic at 30-min at 1/4 and 1/2 sample dilutions. Bupivacaine 0.5% was found to be toxic at 30-min at 1/2 sample dilution. Bupivacaine 0.5% with epinephrine was found to be toxic at 15- and 30-min at 1/4 sample dilution. Lidocaine 1% was found to be toxic at 15- and 30-min at 1/2 sample dilution. Ropivacaine 0.2% and 0.5% remained below LD50 at all time-points and concentrations, with 0.2% demonstrating the least cell death. CONCLUSIONS: Though pain pumps are generally efficacious, LAs may inhibit fibroblasts, including perineural fibroblast and endoneurial fibroblast-like cells, which may contribute to persistent nerve deficits, delayed neurogenic pain, and negatively impact healing. Should a continuous infusion be used, our data supports ropivacaine 0.2%. LEVEL OF EVIDENCE: Basic Science Study; Animal model.

2.
Front Bioeng Biotechnol ; 10: 901317, 2022.
Article in English | MEDLINE | ID: mdl-35837555

ABSTRACT

In orthopaedics, gene-based treatment approaches are being investigated for an array of common -yet medically challenging- pathologic conditions of the skeletal connective tissues and structures (bone, cartilage, ligament, tendon, joints, intervertebral discs etc.). As the skeletal system protects the vital organs and provides weight-bearing structural support, the various tissues are principally composed of dense extracellular matrix (ECM), often with minimal cellularity and vasculature. Due to their functional roles, composition, and distribution throughout the body the skeletal tissues are prone to traumatic injury, and/or structural failure from chronic inflammation and matrix degradation. Due to a mixture of environment and endogenous factors repair processes are often slow and fail to restore the native quality of the ECM and its function. In other cases, large-scale lesions from severe trauma or tumor surgery, exceed the body's healing and regenerative capacity. Although a wide range of exogenous gene products (proteins and RNAs) have the potential to enhance tissue repair/regeneration and inhibit degenerative disease their clinical use is hindered by the absence of practical methods for safe, effective delivery. Cumulatively, a large body of evidence demonstrates the capacity to transfer coding sequences for biologic agents to cells in the skeletal tissues to achieve prolonged delivery at functional levels to augment local repair or inhibit pathologic processes. With an eye toward clinical translation, we discuss the research progress in the primary injury and disease targets in orthopaedic gene therapy. Technical considerations important to the exploration and pre-clinical development are presented, with an emphasis on vector technologies and delivery strategies whose capacity to generate and sustain functional transgene expression in vivo is well-established.

3.
Hum Gene Ther Clin Dev ; 29(2): 101-112, 2018 06.
Article in English | MEDLINE | ID: mdl-29869535

ABSTRACT

The authors are investigating self-complementary adeno-associated virus (scAAV) as a vector for intra-articular gene-delivery of interleukin-1 receptor antagonist (IL-1Ra), and its therapeutic capacity in the treatment of osteoarthritis (OA). To model gene transfer on a scale proportional to the human knee, a frequent site of OA incidence, studies were focused on the joints of the equine forelimb. Using AAV2.5 capsid and equine IL-1Ra as a homologous transgene, a functional ceiling dose of ∼5 × 1012 viral genomes was previously identified, which elevated the steady state levels of eqIL-1Ra in synovial fluids by >40-fold over endogenous production for at least 6 months. Here, using an osteochondral fragmentation model of early OA, the functional capacity of scAAV.IL-1Ra gene-delivery was examined in equine joints over a period of 12 weeks. In the disease model, transgenic eqIL-1Ra expression was several fold higher than seen previously in healthy joints, and correlated directly with the severity of joint pathology at the time of treatment. Despite wide variation in expression, the steady-state eqIL-1Ra in synovial fluids exceeded that of IL-1 by >400-fold in all animals, and a consistent treatment effect was observed. This included a 30-40% reduction in lameness and ∼25% improvement in total joint pathology by both magnetic resonance imaging and arthroscopic assessments, which included reduced joint effusion and synovitis, and improved repair of the osteochondral lesion. No vector-related increase in eqIL-1Ra levels in blood or urine was noted. Cumulatively, these studies in the equine model indicate scAAV.IL-1Ra administration is reasonably safe and capable of sustained therapeutic IL-1Ra production intra-articularly in joints of human scale. This profile supports consideration for human testing in OA.


Subject(s)
Genetic Therapy , Genetic Vectors/administration & dosage , Interleukin 1 Receptor Antagonist Protein/genetics , Osteoarthritis/therapy , Animals , Dependovirus/genetics , Disease Models, Animal , Gene Transfer Techniques/adverse effects , Genetic Vectors/adverse effects , Genetic Vectors/genetics , Horses , Humans , Injections, Intra-Articular , Interleukin 1 Receptor Antagonist Protein/administration & dosage , Knee/pathology , Osteoarthritis/genetics , Osteoarthritis/pathology
4.
Hum Gene Ther Clin Dev ; 29(2): 90-100, 2018 06.
Article in English | MEDLINE | ID: mdl-29869540

ABSTRACT

Toward the treatment of osteoarthritis (OA), the authors have been investigating self-complementary adeno-associated virus (scAAV) for intra-articular delivery of therapeutic gene products. As OA frequently affects weight-bearing joints, pharmacokinetic studies of scAAV gene delivery were performed in the joints of the equine forelimb to identify parameters relevant to clinical translation in humans. Using interleukin-1 receptor antagonist (IL-1Ra) as a secreted therapeutic reporter, scAAV vector plasmids containing codon-optimized cDNA for equine IL-1Ra (eqIL-1Ra) were generated, which produced eqIL-1Ra at levels 30- to 50-fold higher than the native sequence. The most efficient cDNA was packaged in AAV2.5 capsid, and following characterization in vitro, the virus was injected into the carpal and metacarpophalangeal joints of horses over a 100-fold dose range. A putative ceiling dose of 5 × 1012 viral genomes was identified that elevated the steady-state eqIL-1Ra in the synovial fluids of injected joints by >40-fold over endogenous levels and was sustained for at least 6 months. No adverse effects were seen, and eqIL-1Ra in serum and urine remained at background levels throughout. Using the 5 × 1012 viral genome dose of scAAV, and green fluorescent protein as a cytologic marker, the local and systemic distribution of vector and transduced cells following intra-articular injection scAAV.GFP were compared in healthy equine joints and in those with late-stage, naturally occurring OA. In both cases, 99.7% of the vector remained within the injected joint. Strikingly, the pathologies characteristic of OA (synovitis, osteophyte formation, and cartilage erosion) were associated with a substantial increase in transgenic expression relative to tissues in healthy joints. This was most notable in regions of articular cartilage with visible damage, where foci of brilliantly fluorescent chondrocytes were observed. Overall, these data suggest that AAV-mediated gene transfer can provide relatively safe, sustained protein drug delivery to joints of human proportions.


Subject(s)
Gene Transfer Techniques , Genetic Therapy , Interleukin 1 Receptor Antagonist Protein/genetics , Osteoarthritis/therapy , Animals , Dependovirus/genetics , Disease Models, Animal , Genetic Vectors/administration & dosage , Genetic Vectors/adverse effects , Genetic Vectors/genetics , Horses , Humans , Injections, Intra-Articular , Interleukin 1 Receptor Antagonist Protein/administration & dosage , Osteoarthritis/genetics , Osteoarthritis/pathology
5.
Curr Orthop Pract ; 22(4): 322-326, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21755019

ABSTRACT

Osteosarcoma is a highly malignant bone tumor of children and young adults. Cytotoxic chemotherapy combined with aggressive surgery only has a 60% survival rate. Historically, chemotherapy has been developed assuming that all cells within a particular cancer are clonal and near identical. Appreciating the now apparent functional heterogeneity of osteosarcoma cells within and between individual tumors will likely be critical in developing much needed novel effective therapies. The foundation for this heterogeneity may lie in the so called "cancer stem cell" or tumorigenic cell of origin. In this brief review, we will examine the evidence for the existence of this cell and its potential importance for future therapies.

6.
Lab Invest ; 90(11): 1615-27, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20697373

ABSTRACT

To understand the cellular and molecular events contributing to arthrofibrosis, we used an adenovirus to deliver and overexpress transforming growth factor-beta 1 (TGF-ß1) cDNA (Ad.TGF-ß1) in the knee joints of immunocompromised rats. Following delivery, animals were killed periodically, and joint tissues were examined macroscopically and histologically. PCR-array was used to assay alterations in expression patterns of extracellular matrix (ECM)-associated genes. By days 5 and 10, TGF-ß1 induced an increase in knee diameter and complete encasement of joints in dense scar-like tissue, locking joints at 90° of flexion. Histologically, massive proliferation of synovial fibroblasts was seen, followed by their differentiation into myofibroblasts. The fibrotic tissue displaced the normal architecture of the joint capsule and fused with articular cartilage. RNA expression profiles showed high levels of transcription of numerous MMPs, matricellular and ECM proteins. By day 30, the phenotype of the fibrotic tissue had undergone chondrometaplasia, indicated by cellular morphology, matrix composition and >100-fold increases in expression of collagen type II and cartilage link protein. Pre-labeling of articular cells by injection with recombinant lentivirus containing eGFP cDNA showed fibrotic/cartilaginous tissues appeared to arise almost entirely from local proliferation and differentiation of resident fibroblasts. Altogether, these results indicate that TGF-ß1 is a potent inducer of arthrofibrosis, and illustrate the proliferative potential and plasticity of articular fibroblasts. They suggest the mechanisms causing arthrofibrosis share many aspects with tumorigenesis.


Subject(s)
Chondromatosis, Synovial/etiology , Joints/pathology , Transforming Growth Factor beta1/physiology , Adenoviridae/genetics , Animals , Cadherins/genetics , Connective Tissue Growth Factor/genetics , Fibroblasts/physiology , Fibrosis , Gene Expression Profiling , Male , Matrix Metalloproteinases/genetics , Rats , Rats, Nude , Rats, Wistar , Transforming Growth Factor beta1/genetics
7.
Cancer Res ; 69(14): 5648-55, 2009 Jul 15.
Article in English | MEDLINE | ID: mdl-19584295

ABSTRACT

We explored the nature of the tumor-initiating cell in osteosarcoma, a bone malignancy that predominately occurs in children. Previously, we observed expression of Oct-4, an embryonal transcriptional regulator, in osteosarcoma cell cultures and tissues. To examine the relationship between Oct-4 and tumorigenesis, cells from an osteosarcoma biopsy (OS521) were stably transfected with a plasmid containing the human Oct-4 promoter driving a green fluorescent protein (GFP) reporter to generate the transgenic line OS521Oct-4p. In culture, only approximately 24% of the OS521Oct-4p cells were capable of activating the transgenic Oct-4 promoter; yet, xenograft tumors generated in NOD/SCID mice contained approximately 67% GFP(+) cells, which selectively expressed the mesenchymal stem cell-associated surface antigens CD105 and ICAM-1. Comparison of the tumor-forming capacity of GFP-enriched and GFP-depleted cell fractions revealed that the GFP-enriched fractions were at least 100-fold more tumorigenic, capable of forming tumors at doses of <300 cells, and formed metastases in the lung. Clonal populations derived from a single Oct-4/GFP(+) cell were capable of forming tumors heterogeneous for Oct-4/GFP expression. These data are consistent with the cancer stem cell model of tumorigenesis in osteosarcoma and implicate a functional link between the capacity to activate an exogenous Oct-4 promoter and tumor formation. This osteosarcoma tumor-initiating cell appears highly prolific and constitutes a majority of the cell population in a primary xenograft tumor, which may provide a biological basis for the particular virulence of this type of cancer.


Subject(s)
Neoplastic Stem Cells/pathology , Octamer Transcription Factor-3/genetics , Osteosarcoma/pathology , Promoter Regions, Genetic/genetics , Animals , Antigens, CD/analysis , Cell Line, Tumor , Endoglin , Female , Flow Cytometry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Immunohistochemistry , Intercellular Adhesion Molecule-1/analysis , Mice , Mice, Inbred NOD , Mice, SCID , Microscopy, Fluorescence , Neoplasm Transplantation , Neoplastic Stem Cells/metabolism , Osteosarcoma/genetics , Osteosarcoma/metabolism , Receptors, Cell Surface/analysis , Sarcoma, Experimental/genetics , Sarcoma, Experimental/metabolism , Sarcoma, Experimental/pathology , Time Factors , Transfection
8.
J Gene Med ; 11(7): 605-14, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19384892

ABSTRACT

BACKGROUND: The adeno-associated virus (AAV) has many safety features that favor its use in the treatment of arthritic conditions; however, the conventional, single-stranded vector is inefficient for gene delivery to fibroblastic cells that primarily populate articular tissues. This has been attributed to the inability of these cells to convert the vector to a double-stranded form. To overcome this, we evaluated double-stranded self-complementary (sc) AAV as a vehicle for intra-articular gene delivery. METHODS: Conventional and scAAV vectors were used to infect lapine articular fibroblasts in culture to determine transduction efficiency, transgene expression levels, and nuclear trafficking. scAAV containing the cDNA for interleukin (IL)-1 receptor antagonist (Ra) was delivered to the joints of naïve rabbits and those with IL-1beta-induced arthritis. From lavage of the joint space, levels of transgenic expression and persistence were measured by enzyme-linked immunosorbent assay. Infiltrating leukocytes were quantified using a hemocytometer. RESULTS: Transgene expression from scAAV had an earlier onset and was approximately 25-fold greater than conventional AAV despite the presence of similar numbers of viral genomes in the nuclei of infected cells. Fibroblasts transduced with scAAV produced amounts of IL1-Ra comparable to those transduced with adenoviral and lentiviral vectors. IL1-Ra was present in lavage fluid of most animals for 2 weeks in sufficient quantities to inhibit inflammation of the IL-1beta-driven model. Once lost, neither subsequent inflammatory events, nor re-administration of the virus could re-establish transgene expression. CONCLUSIONS: scAAV-mediated intra-articular gene transfer is robust and similarly efficient in both normal and inflamed joints; the resulting transgenic expression is sufficient to achieve biological relevance in joints of human proportion.


Subject(s)
Dependovirus/genetics , Gene Transfer Techniques , Genetic Therapy/methods , Injections, Intra-Articular , Interleukin 1 Receptor Antagonist Protein/genetics , Animals , Arthritis/therapy , Cartilage, Articular/cytology , Cells, Cultured , Dependovirus/metabolism , Fibroblasts/cytology , Fibroblasts/physiology , Genetic Vectors , Humans , Interleukin 1 Receptor Antagonist Protein/metabolism , Rabbits , Transgenes
9.
Curr Gene Ther ; 8(4): 273-86, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18691023

ABSTRACT

Advances in molecular and cellular biology have identified a wide variety of proteins including targeted cytokine inhibitors, immunomodulatory proteins, cytotoxic mediators, angiogenesis inhibitors, and intracellular signalling molecules that could be of great benefit in the treatment of chronic joint diseases, such as osteo- and rheumatoid arthritis. Unfortunately, protein-based drugs are difficult to administer effectively. They have a high rate of turnover, requiring frequent readministration, and exposure in non-diseased tissue can lead to serious side effects. Gene transfer technologies offer methods to enhance the efficacy of protein-based therapies, enabling the body to produce these molecules locally at elevated levels for extended periods. The proof of concept of gene therapies for arthritis has been exhaustively demonstrated in multiple laboratories and in numerous animal models. This review attempts to condense these studies and to discuss the relative benefits and limitations of the methods proposed and to discuss the challenges toward translating these technologies into clinical realities.


Subject(s)
Genetic Therapy , Genetic Vectors/therapeutic use , Joint Diseases/therapy , Chronic Disease , Gene Targeting , Joint Diseases/genetics
10.
Arthritis Res Ther ; 8(6): R173, 2006.
Article in English | MEDLINE | ID: mdl-17109745

ABSTRACT

The effects of exogenous glucosamine on the biology of articular chondrocytes were determined by examining global transcription patterns under normal culture conditions and following challenge with IL-1beta. Chondrocytes isolated from the cartilage of rats were cultured in several flasks either alone or in the presence of 20 mM glucosamine. Six hours later, one-half of the cultures of each group were challenged with 10 ng/ml IL-1beta. Fourteen hours after this challenge, RNA was extracted from each culture individually and used to probe microarray chips corresponding to the entire rat genome. Glucosamine alone had no observable stimulatory effect on the transcription of primary cartilage matrix genes, such as aggrecan, collagen type II, or genes involved in glycosaminoglycan synthesis; however, glucosamine proved to be a potent, broad-spectrum inhibitor of IL-1beta. Of the 2,813 genes whose transcription was altered by IL-1beta stimulation (P < 0.0001), glucosamine significantly blocked the response in 2,055 (approximately 73%). Glucosamine fully protected the chondrocytes from IL-1-induced expression of inflammatory cytokines, chemokines, and growth factors as well as proteins involved in prostaglandin E2 and nitric oxide synthesis. It also blocked the IL-1-induced expression of matrix-specific proteases such as MMP-3, MMP-9, MMP-10, MMP-12, and ADAMTS-1. The concentrations of IL-1 and glucosamine used in these assays were supraphysiological and were not representative of the arthritic joint following oral consumption of glucosamine. They suggest, however, that the potential benefit of glucosamine in osteoarthritis is not related to cartilage matrix biosynthesis, but is more probably related to its ability to globally inhibit the deleterious effects of IL-1beta signaling. These results suggest that glucosamine, if administered effectively, may indeed have anti-arthritic properties, but primarily as an anti-inflammatory agent.


Subject(s)
Arthritis/metabolism , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Glucosamine/metabolism , Interleukin-1beta/metabolism , Animals , Cartilage, Articular/pathology , Cells, Cultured , Extracellular Matrix/metabolism , Gene Expression , Gene Expression Regulation , Male , Oligonucleotide Array Sequence Analysis , Rats , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction , Transcription, Genetic
11.
FEBS J ; 273(4): 746-55, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16441661

ABSTRACT

Eukaryotic chromosomal DNA is densely packaged in the nucleus and organized into discrete domains of active and inactive chromatin. Gene loci that are activated during the process of cell differentiation undergo changes that result in modifications of specific histone tail residues and in loosening of chromatin structure. The beta-globin genes are expressed exclusively in erythroid cells. High-level expression of these genes is mediated by a locus control region (LCR), a powerful DNA regulatory element composed of several DNase I hypersensitive (HS) sites and located far upstream of the beta-globin genes. Here we show that RNA polymerase II and specific histone modifications that mark transcriptionally active chromatin domains are associated with the LCR core elements HS2 and HS3 in murine embryonic stem cells prior to differentiation along the erythroid lineage. At this stage HS3 is abundantly transcribed. After in vitro differentiation, RNA Polymerase II can also be detected at the embryonic epsilon- and adult beta-globin genes. These results are consistent with the hypothesis that activation of the beta-globin gene locus is initiated by protein complexes recruited to the LCR.


Subject(s)
Cell Differentiation/physiology , Erythroid Cells , Gene Expression Regulation , Globins/genetics , Locus Control Region , Stem Cells/physiology , Transcription, Genetic , Animals , Chromatin/chemistry , Chromatin/metabolism , Embryo, Mammalian/cytology , Erythroid Cells/cytology , Erythroid Cells/metabolism , Globins/metabolism , Histones/metabolism , Humans , Macromolecular Substances , Mice , Promoter Regions, Genetic , RNA Polymerase II/metabolism , Stem Cells/cytology
12.
Genes Cells ; 9(11): 1043-53, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15507116

ABSTRACT

Expression constructs are subject to position-effects in transgenic assays unless they harbour elements that protect them from negative or positive influences exerted by chromatin at the site of integration. Locus control regions (LCRs) and boundary elements are able to protect from position effects by preventing heterochromatization of linked genes. The LCR in the human beta-globin gene locus is located far upstream of the genes and composed of several erythroid specific DNase I hypersensitive (HS) sites. Previous studies demonstrated that the LCR HS sites act synergistically to confer position-independent and high-level globin gene expression at different integration sites in transgenic mice. Here we show that LCR HS sites 2 and 3, in combination with boundary elements derived from the chicken beta-globin gene locus, confer high-level human beta-globin gene expression in different chromosomal integration sites in transgenic mice. Moreover, we found that the construct is accessible to nucleases and highly expressed when integrated in a centromeric region. These results demonstrate that the combination of enhancer, chromatin opening and boundary activities can establish independent expression units when integrated into chromatin.


Subject(s)
Centromere/genetics , Chromatin/physiology , Globins/genetics , Locus Control Region , Transgenes , Animals , Chickens , Humans , Mice , Mice, Transgenic
13.
J Biol Chem ; 279(48): 50350-7, 2004 Nov 26.
Article in English | MEDLINE | ID: mdl-15385559

ABSTRACT

Erythroid-specific, high level expression of the beta-globin genes is regulated by the locus control region (LCR), composed of multiple DNase I-hypersensitive sites and located far upstream of the genes. Recent studies have shown that LCR core elements recruit RNA polymerase II (pol II). In the present study we demonstrate the following: 1) pol II and other basal transcription factors are recruited to LCR core hypersensitive elements; 2) pol II dissociates from and re-associates with the globin gene locus during replication; 3) pol II interacts with the LCR but not with the beta-globin gene prior to erythroid differentiation in embryonic stem cells; and 4) the erythroid transcription factor NF-E2 facilitates the transfer of pol II from immobilized LCR constructs to a beta-globin gene in vitro. The data are consistent with the hypothesis that the LCR serves as the primary attachment site for the recruitment of macromolecular complexes involved in chromatin structure alterations and transcription of the globin genes.


Subject(s)
DNA/metabolism , Globins/genetics , Transcription, Genetic/physiology , Animals , Humans , K562 Cells , Mice , RNA Polymerase II/metabolism , Stem Cells , Transcription Factors/metabolism
14.
Eur J Biochem ; 269(6): 1589-99, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11895428

ABSTRACT

The human beta-globin gene locus is the subject of intense study, and over the past two decades a wealth of information has accumulated on how tissue-specific and stage-specific expression of its genes is achieved. The data are extensive and it would be difficult, if not impossible, to formulate a comprehensive model integrating every aspect of what is currently known. In this review, we introduce the fundamental characteristics of globin locus regulation as well as questions on which much of the current research is predicated. We then outline a hypothesis that encompasses more recent results, focusing on the modification of higher-order chromatin structure and recruitment of transcription complexes to the globin locus. The essence of this hypothesis is that the locus control region (LCR) is a genetic entity highly accessible to and capable of recruiting, with great efficiency, chromatin-modifying, coactivator, and transcription complexes. These complexes are used to establish accessible chromatin domains, allowing basal factors to be loaded on to specific globin gene promoters in a developmental stage-specific manner. We conceptually divide this process into four steps: (a) generation of a highly accessible LCR holocomplex; (b) recruitment of transcription and chromatin-modifying complexes to the LCR; (c) establishment of chromatin domains permissive for transcription; (d) transfer of transcription complexes to globin gene promoters.


Subject(s)
Locus Control Region , Chromatin/genetics , Gene Expression Regulation, Developmental , Humans , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...