Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Hum Neurosci ; 15: 590251, 2021.
Article in English | MEDLINE | ID: mdl-33776665

ABSTRACT

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a clinically effective tool for treating medically refractory Parkinson's disease (PD), but its neural mechanisms remain debated. Previous work has demonstrated that STN DBS results in evoked potentials (EPs) in the primary motor cortex (M1), suggesting that modulation of cortical physiology may be involved in its therapeutic effects. Due to technical challenges presented by high-amplitude DBS artifacts, these EPs are often measured in response to low-frequency stimulation, which is generally ineffective at PD symptom management. This study aims to characterize STN-to-cortex EPs seen during clinically relevant high-frequency STN DBS for PD. Intraoperatively, we applied STN DBS to 6 PD patients while recording electrocorticography (ECoG) from an electrode strip over the ipsilateral central sulcus. Using recently published techniques, we removed large stimulation artifacts to enable quantification of STN-to-cortex EPs. Two cortical EPs were observed - one synchronized with DBS onset and persisting during ongoing stimulation, and one immediately following DBS offset, here termed the "start" and the "end" EPs respectively. The start EP is, to our knowledge, the first long-latency cortical EP reported during ongoing high-frequency DBS. The start and end EPs differ in magnitude (p < 0.05) and latency (p < 0.001), and the end, but not the start, EP magnitude has a significant relationship (p < 0.001, adjusted for random effects of subject) to ongoing high gamma (80-150 Hz) power during the EP. These contrasts may suggest mechanistic or circuit differences in EP production during the two time periods. This represents a potential framework for relating DBS clinical efficacy to the effects of a variety of stimulation parameters on EPs.

2.
Brain Behav ; 7(12): e00863, 2017 12.
Article in English | MEDLINE | ID: mdl-29299382

ABSTRACT

Introduction: Resting-state connectivity patterns have been observed in humans and other mammal species, and can be recorded using a variety of different technologies. Functional connectivity has been previously compared between species using resting-state fMRI, but not in electrophysiological studies. Methods: We compared connectivity with implanted electrodes in humans (electrocorticography) to macaques and sheep (microelectrocorticography), which are capable of recording neural data at high frequencies with spatial precision. We specifically examined synchrony, implicated in functional integration between regions. Results: We found that connectivity strength was overwhelmingly similar in humans and monkeys for pairs of two different brain regions (prefrontal, motor, premotor, parietal), but differed more often within single brain regions. The two connectivity measures, correlation and phase locking value, were similar in most comparisons. Connectivity strength agreed more often between the species at higher frequencies. Where the species differed, monkey synchrony was stronger than human in all but one case. In contrast, human and sheep connectivity within somatosensory cortex diverged in almost all frequencies, with human connectivity stronger than sheep. Discussion: Our findings imply greater heterogeneity within regions in humans than in monkeys, but comparable functional interactions between regions in the two species. This suggests that monkeys may be effectively used to probe resting-state connectivity in humans, and that such findings can then be validated in humans. Although the discrepancy between humans and sheep is larger, we suggest that findings from sheep in highly invasive studies may be used to provide guidance for studies in other species.


Subject(s)
Brain/physiology , Neural Pathways/physiology , Animals , Brain Mapping/methods , Electrocorticography , Electrophysiological Phenomena , Female , Humans , Macaca , Magnetic Resonance Imaging , Male , Sheep , Somatosensory Cortex/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...