Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(16): 168201, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38701478

ABSTRACT

We study a model chiral fluid in two dimensions composed of Brownian disks interacting via a Lennard-Jones potential and a nonconservative transverse force, mimicking colloids spinning at a given rate. The system exhibits a phase separation between a chiral liquid and a dilute gas phase that can be characterized using a thermodynamic framework. We compute the equations of state and show that the surface tension controls interface corrections to the coexisting pressure predicted from the equal-area construction. Transverse forces increase surface tension and generate edge currents at the liquid-gas interface. The analysis of these currents shows that the rotational viscosity introduced in chiral hydrodynamics is consistent with microscopic bulk mechanical measurements. Chirality can also break the solid phase, giving rise to a dense fluid made of rotating hexatic patches. Our Letter paves the way for the development of the statistical mechanics of chiral particles assemblies.

2.
Phys Rev Lett ; 131(17): 178302, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37955492

ABSTRACT

We numerically study the shear rheology of a binary mixture of soft active Brownian particles, from the fluid to the disordered solid regime. At low shear rates, we find a Newtonian regime, where a Green-Kubo relation with an effective temperature provides the linear viscosity. It is followed by a shear-thinning regime at high shear rates. At high densities, solidification is signaled by the emergence of a finite yield stress. We construct a "fluid-glass-jamming" phase diagram with activity replacing temperature. While both parameters gauge fluctuations, activity also changes the exponent characterizing the decay of the diffusivity close to the glass transition and the shape of the yield stress surface. The dense disordered active solid appears to be mostly dominated by athermal jamming rather than glass rheology.

3.
Phys Rev Lett ; 131(6): 068201, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37625054

ABSTRACT

We study the dynamics of clusters of active Brownian disks generated by motility-induced phase separation, by applying an algorithm that we devised to track cluster trajectories. We identify an aggregation mechanism that goes beyond Ostwald ripening but also yields a dynamic exponent characterizing the cluster growth z=3, in the timescales explored numerically. Clusters of mass M self-propel with enhanced diffusivity D∼Pe^{2}/sqrt[M]. Their fast motion drives aggregation into large fractal structures, which are patchworks of diverse hexatic orders, and coexist with regular, orientationally uniform, smaller ones. To bring out the impact of activity, we perform a comparative study of a passive system that evidences major differences with the active case.

4.
J Chem Phys ; 157(22): 224905, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36546814

ABSTRACT

We derive a dynamical field theory for self-propelled particles subjected to generic torques and forces by explicitly coarse-graining their microscopic dynamics, described by a many-body Fokker-Planck equation. The model includes both intrinsic torques inducing self-rotation, as well as interparticle torques leading to, for instance, the local alignment of particles' orientations. Within this approach, although the functional form of the pairwise interactions does not need to be specified, one can directly map the parameters of the field theory onto the parameters of particle-based models. We perform a linear stability analysis of the homogeneous solution of the field equations and find both long-wavelength and short-wavelength instabilities. The former signals the emergence of a macroscopic structure, which we associate with motility-induced phase separation, while the second one signals the growth of a finite structure with a characteristic size. Intrinsic torques hinder phase separation, pushing the onset of the long-wavelength instability to higher activities. Furthermore, they generate finite-sized structures with a characteristic size proportional to both the self-propulsion velocity and the inverse of the self-rotation frequency. Our results show that a general mechanism might explain why chirality tends to suppress motility-induced phase separation but instead promotes the formation of non-equilibrium patterns.

5.
Soft Matter ; 18(29): 5388-5401, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35797661

ABSTRACT

We present a hydrodynamic theory for systems of dipolar active Brownian particles which, in the regime of weak dipolar coupling, predicts the onset of motility-induced phase separation (MIPS), consistent with Brownian dynamics (BD) simulations. The hydrodynamic equations are derived by explicitly coarse-graining the microscopic Langevin dynamics, thus allowing for a mapping of the coarse-grained model and particle-resolved simulations. Performing BD simulations at fixed density, we find that dipolar interactions tend to hinder MIPS, as first reported in [Liao et al., Soft Matter, 2020, 16, 2208]. Here we demonstrate that the theoretical approach indeed captures the suppression of MIPS. Moreover, the analysis of the numerically obtained, angle-dependent correlation functions sheds light into the underlying microscopic mechanisms leading to the destabilization of the homogeneous phase.

6.
Soft Matter ; 18(3): 566-591, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34928290

ABSTRACT

We provide a comprehensive quantitative analysis of localized and extended topological defects in the steady state of 2D passive and active repulsive Brownian disk systems. We show that, both in and out-of-equilibrium, the passage from the solid to the hexatic is driven by the unbinding of dislocations, in quantitative agreement with the KTHNY singularity. Instead, extended clusters of defects largely dominate below the solid-hexatic critical line. The latter percolate in the liquid phase very close to the hexatic-liquid transition, both for continuous and discontinuous transitions, in the homogeneous liquid regime. At critical percolation the clusters of defects are fractal with statistical and geometric properties that are independent of the activity and compatible with the universality class of uncorrelated critical percolation. We also characterize the spatial organization of point-like defects and we show that the disclinations are not free, but rather always very near more complex defect structures. At high activity, the bulk of the dense phase generated by Motility-Induced Phase Separation is characterized by a density of point-like defects, and statistics and morphology of defect clusters, set by the amount of activity and not the packing fraction. Hexatic domains within the dense phase are separated by grain-boundaries along which a finite network of topological defects resides, interrupted by gas bubbles in cavitation. This structure is dynamic in the sense that the defect network allows for an unzipping mechanism that leaves free space for gas bubbles to appear, close, and even be released into the dilute phase.

7.
Phys Rev E ; 104(5-1): 054611, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34942723

ABSTRACT

We present a comprehensive study of a model system of repulsive self-propelled disks in two dimensions with ferromagnetic and nematic velocity alignment interactions. We characterize the phase behavior of the system as a function of the alignment and self-propulsion strength, featuring orientational order for strong alignment and motility-induced phase separation (MIPS) at moderate alignment but high enough self-propulsion. We derive a microscopic theory for these systems yielding a closed set of hydrodynamic equations from which we perform a linear stability analysis of the homogenous disordered state. This analysis predicts MIPS in the presence of aligning torques. The nature of the continuum theory allows for an explicit quantitative comparison with particle-based simulations, which consistently shows that ferromagnetic alignment fosters phase separation, while nematic alignment does not alter either the nature or the location of the instability responsible for it. In the ferromagnetic case, such behavior is due to an increase of the imbalance of the number of particle collisions along different orientations, giving rise to the self-trapping of particles along their self-propulsion direction. On the contrary, the anisotropy of the pair correlation function, which encodes this self-trapping effect, is not significantly affected by nematic torques. Our work shows the predictive power of such microscopic theories to describe complex active matter systems with different interaction symmetries and sheds light on the impact of velocity-alignment interactions in motility-induced phase separation.

8.
Phys Rev Lett ; 127(8): 088004, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34477446

ABSTRACT

We consider a nonequilibrium extension of the 2D XY model, equivalent to the noisy Kuramoto model of synchronization with short-range coupling, where rotors sitting on a square lattice are self-driven by random intrinsic frequencies. We study the static and dynamic properties of topological defects (vortices) and establish how self-spinning affects the Berezenskii-Kosterlitz-Thouless phase transition scenario. The nonequilibrium drive breaks the quasi-long-range ordered phase of the 2D XY model into a mosaic of ordered domains of controllable size and results in self-propelled vortices that generically unbind at any temperature, featuring superdiffusion ⟨r^{2}(t)⟩∼t^{3/2} with a Gaussian distribution of displacements. Our work provides a simple framework to investigate topological defects in nonequilibrium matter and sheds new light on the problem of synchronization of locally coupled oscillators.

9.
Phys Rev Lett ; 125(17): 178004, 2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33156654

ABSTRACT

As a result of nonequilibrium forces, purely repulsive self-propelled particles undergo macrophase separation between a dense and a dilute phase. We present a thorough study of the ordering kinetics of such motility-induced phase separation (MIPS) in active Brownian particles in two dimensions, and we show that it is generically accompanied by microphase separation. The growth of the dense phase follows a law akin to the one of liquid-gas phase separation. However, it is made of a mosaic of hexatic microdomains whose size does not coarsen indefinitely, leaving behind a network of extended topological defects from which microscopic dilute bubbles arise. The characteristic length of these finite-size structures increases with activity, independently of the choice of initial conditions.

10.
Phys Rev Lett ; 123(23): 238003, 2019 Dec 06.
Article in English | MEDLINE | ID: mdl-31868450

ABSTRACT

We address the question of how interacting active systems in a nonequilibrium steady state respond to an external perturbation. We establish an extended fluctuation-dissipation theorem for active Brownian particles (ABP), which highlights the role played by the local violation of detailed balance due to activity. By making use of a Markovian approximation we derive closed Green-Kubo expressions for the diffusivity and mobility of ABP and quantify the deviations from the Stokes-Einstein relation. We compute the linear response function to an external force using unperturbed simulations of ABP and compare the results with the analytical predictions of the transport coefficients. Our results show the importance of the interplay between activity and interactions in the departure from equilibrium linear response.

11.
Phys Rev E ; 100(1-1): 012406, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31499849

ABSTRACT

Chiral active particles, or self-propelled circle swimmers, from sperm cells to asymmetric Janus colloids, form a rich set of patterns, which are different from those seen in linear swimmers. Such patterns have mainly been explored for identical circle swimmers, while real-world circle swimmers typically possess a frequency distribution. Here we show that even the simplest mixture of (velocity-aligning) circle swimmers with two different frequencies hosts a complex world of superstructures: The most remarkable example comprises a microflock pattern, formed in one species, while the other species phase separates and forms a macrocluster, coexisting with a gas phase. Here one species microphase separates and selects a characteristic length scale, whereas the other one macrophase separates and selects a density. A second notable example, here occurring in an isotropic system, are patterns comprising two different characteristic length scales, which are controllable via frequency and swimming speed of the individual particles.


Subject(s)
Models, Theoretical , Swimming
12.
J Chem Phys ; 150(16): 164901, 2019 Apr 28.
Article in English | MEDLINE | ID: mdl-31042926

ABSTRACT

In this article, we combine experiments and theory to investigate the transport properties of anisotropic hematite colloidal rotors that dynamically assemble into translating clusters upon application of a rotating magnetic field. The applied field exerts a torque to the particles forcing rotation close to a surface and thus a net translational motion at a frequency tunable speed. When approaching, pairs of particles are observed to assemble into stable three-dimensional clusters that perform a periodic leap-frog type dynamics and propel at a faster speed. We analyze the cluster formation and its lifetime and investigate the role of particle shape in the propulsion speed and stability. We show that the dynamics of the system results from a delicate balance between magnetic dipolar interactions and hydrodynamics, and we introduce a theoretical model that qualitatively explains the observed phenomena.

13.
Phys Rev Lett ; 121(9): 098003, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-30230874

ABSTRACT

We establish the complete phase diagram of self-propelled hard disks in two spatial dimensions from the analysis of the equation of state and the statistics of local order parameters. The equilibrium melting scenario is maintained at small activities, with coexistence between active liquid and hexatic order, followed by a proper hexatic phase, and a further transition to an active solid. As activity increases, the emergence of hexatic and solid order is shifted towards higher densities. Above a critical activity and for a certain range of packing fractions, the system undergoes motility-induced phase separation and demixes into low and high density phases; the latter can be either disordered (liquid) or ordered (hexatic or solid) depending on the activity.

14.
Soft Matter ; 14(14): 2610-2618, 2018 Apr 04.
Article in English | MEDLINE | ID: mdl-29569673

ABSTRACT

We present a comprehensive computational study of the collective behavior emerging from the competition between self-propulsion, excluded volume interactions and velocity-alignment in a two-dimensional model of active particles. We consider an extension of the active brownian particles model where the self-propulsion direction of the particles aligns with the one of their neighbors. We analyze the onset of collective motion (flocking) in a low-density regime (10% surface area) and show that it is mainly controlled by the strength of velocity-alignment interactions: the competition between self-propulsion and crowding effects plays a minor role in the emergence of flocking. However, above the flocking threshold, the system presents a richer pattern formation scenario than analogous models without alignment interactions (active brownian particles) or excluded volume effects (Vicsek-like models). Depending on the parameter regime, the structure of the system is characterized by either a broad distribution of finite-sized polar clusters or the presence of an amorphous, highly fluctuating, large-scale traveling structure which can take a lane-like or band-like form (and usually a hybrid structure which is halfway in between both). We establish a phase diagram that summarizes collective behavior of polar active brownian particles and propose a generic mechanism to describe the complexity of the large-scale structures observed in systems of repulsive self-propelled particles.

15.
J Phys Condens Matter ; 30(8): 084001, 2018 Feb 28.
Article in English | MEDLINE | ID: mdl-29309273

ABSTRACT

Chiral active particles (or self-propelled circle swimmers) feature a rich collective behavior, comprising rotating macro-clusters and micro-flock patterns which consist of phase-synchronized rotating clusters with a characteristic self-limited size. These patterns emerge from the competition of alignment interactions and rotations suggesting that they might occur generically in many chiral active matter systems. However, although excluded volume interactions occur naturally among typical circle swimmers, it is not yet clear if macro-clusters and micro-flock patterns survive their presence. The present work shows that both types of pattern do survive but feature strongly enhance fluctuations regarding the size and shape of the individual clusters. Despite these fluctuations, we find that the average micro-flock size still follows the same characteristic scaling law as in the absence of excluded volume interactions, i.e. micro-flock sizes scale linearly with the single-swimmer radius.

16.
Soft Matter ; 13(44): 8113-8119, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29105717

ABSTRACT

As a result of the competition between self-propulsion and excluded volume interactions, purely repulsive self-propelled spherical particles undergo a motility-induced phase separation (MIPS). We carry out a systematic computational study, considering several interaction potentials, systems confined by hard walls or with periodic boundary conditions, and different initial conditions. This approach allows us to identify that, despite its non-equilibrium nature, the equations of state of Active Brownian Particles (ABP) across MIPS verify the characteristic properties of first-order liquid-gas phase transitions, meaning, equality of pressure of the coexisting phases once a nucleation barrier has been overcome and, in the opposite case, hysteresis around the transition as long as the system remains in the metastable region. Our results show that the equations of state of ABPs account for their phase behaviour, providing a firm basis to describe MIPS as an equilibrium-like phase transition.

17.
Phys Rev Lett ; 119(5): 058002, 2017 Aug 04.
Article in English | MEDLINE | ID: mdl-28949732

ABSTRACT

We generalize the Vicsek model to describe the collective behavior of polar circle swimmers with local alignment interactions. While the phase transition leading to collective motion in 2D (flocking) occurs at the same interaction to noise ratio as for linear swimmers, as we show, circular motion enhances the polarization in the ordered phase (enhanced flocking) and induces secondary instabilities leading to structure formation. Slow rotations promote macroscopic droplets with late time sizes proportional to the system size (indicating phase separation) whereas fast rotations generate patterns consisting of phase synchronized microflocks with a controllable characteristic size proportional to the average single-particle swimming radius. Our results defy the viewpoint that monofrequent rotations form a vapid extension of the Vicsek model and establish a generic route to pattern formation in chiral active matter with possible applications for understanding and designing rotating microflocks.

18.
Article in English | MEDLINE | ID: mdl-25019770

ABSTRACT

We introduce a kinetic Monte Carlo model for self-propelled hard disks to capture with minimal ingredients the interplay between thermal fluctuations, excluded volume, and self-propulsion in large assemblies of active particles. We analyze in detail the resulting (density, self-propulsion) nonequilibrium phase diagram over a broad range of parameters. We find that purely repulsive hard disks spontaneously aggregate into fractal clusters as self-propulsion is increased and rationalize the evolution of the average cluster size by developing a kinetic model of reversible aggregation. As density is increased, the nonequilibrium clusters percolate to form a ramified structure reminiscent of a physical gel. We show that the addition of a finite amount of noise is needed to trigger a nonequilibrium phase separation, showing that demixing in active Brownian particles results from a delicate balance between noise, interparticle interactions, and self-propulsion. We show that self-propulsion has a profound influence on the dynamics of the active fluid. We find that the diffusion constant has a nonmonotonic behavior as self-propulsion is increased at finite density and that activity produces strong deviations from Fickian diffusion that persist over large time scales and length scales, suggesting that systems of active particles generically behave as dynamically heterogeneous systems.


Subject(s)
Kinetics , Models, Theoretical , Monte Carlo Method , Cluster Analysis , Diffusion , Fractals , Gels , Motion , Probability , Temperature , Time
19.
Phys Rev Lett ; 110(20): 207206, 2013 May 17.
Article in English | MEDLINE | ID: mdl-25167447

ABSTRACT

We use the sixteen-vertex model to describe bidimensional artificial spin ice. We find excellent agreement between vertex densities in 15 differently grown samples and the predictions of the model. Our results demonstrate that the samples are in usual thermal equilibrium away from a critical point separating a disordered and an antiferromagnetic phase in the model. The second-order phase transition that we predict suggests that the spatial arrangement of vertices in near-critical artificial spin ice should be studied in more detail in order to verify whether they show the expected space and time long-range correlations.

SELECTION OF CITATIONS
SEARCH DETAIL
...