Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Int J Mol Sci ; 22(24)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34948275

ABSTRACT

L-alpha glycerylphosphorylcholine (GPC), a nutritional supplement, has been demonstrated to improve neurological function. However, a new study suggests that GPC supplementation increases incident stroke risk thus its potential adverse effects warrant further investigation. Here we show that GPC promotes atherosclerosis in hyperlipidemic Apoe-/- mice. GPC can be metabolized to trimethylamine N-oxide, a pro-atherogenic agent, suggesting a potential molecular mechanism underlying the observed atherosclerosis progression. GPC supplementation shifted the gut microbial community structure, characterized by increased abundance of Parabacteroides, Ruminococcus, and Bacteroides and decreased abundance of Akkermansia, Lactobacillus, and Roseburia, as determined by 16S rRNA gene sequencing. These data are consistent with a reduction in fecal and cecal short chain fatty acids in GPC-fed mice. Additionally, we found that GPC supplementation led to an increased relative abundance of choline trimethylamine lyase (cutC)-encoding bacteria via qPCR. Interrogation of host inflammatory signaling showed that GPC supplementation increased expression of the proinflammatory effectors CXCL13 and TIMP-1 and activated NF-κB and MAPK signaling pathways in human coronary artery endothelial cells. Finally, targeted and untargeted metabolomic analysis of murine plasma revealed additional metabolites associated with GPC supplementation and atherosclerosis. In summary, our results show GPC promotes atherosclerosis through multiple mechanisms and that caution should be applied when using GPC as a nutritional supplement.


Subject(s)
Atherosclerosis/etiology , Glycerylphosphorylcholine/adverse effects , Glycerylphosphorylcholine/metabolism , Animals , Apolipoproteins E/genetics , Atherosclerosis/chemically induced , Atherosclerosis/metabolism , Cecum/metabolism , Cecum/microbiology , Cell Line , Dietary Supplements/adverse effects , Endothelial Cells/metabolism , Fatty Acids, Volatile/metabolism , Feces/microbiology , Female , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/genetics , Glycerylphosphorylcholine/pharmacology , Humans , Male , Methylamines/adverse effects , Methylamines/metabolism , Mice , Mice, Inbred C57BL , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism
2.
J Am Heart Assoc ; 10(21): e021934, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34713713

ABSTRACT

Background Trimethylamine-N-oxide (TMAO) is a small molecule derived from the metabolism of dietary nutrients by gut microbes and contributes to cardiovascular disease. Plasma TMAO increases following consumption of red meat. This metabolic change is thought to be partly because of the expansion of gut microbes able to use nutrients abundant in red meat. Methods and Results We used data from a randomized crossover study to estimate the degree to which TMAO can be estimated from fecal microbial composition. Healthy participants received a series of 3 diets that differed in protein source (red meat, white meat, and non-meat), and fecal, plasma, and urine samples were collected following 4 weeks of exposure to each diet. TMAO was quantitated in plasma and urine, while shotgun metagenomic sequencing was performed on fecal DNA. While the cai gene cluster was weakly correlated with plasma TMAO (rho=0.17, P=0.0007), elastic net models of TMAO were not improved by abundances of bacterial genes known to contribute to TMAO synthesis. A global analysis of all taxonomic groups, genes, and gene families found no meaningful predictors of TMAO. We postulated that abundances of known genes related to TMAO production do not predict bacterial metabolism, and we measured choline- and carnitine-trimethylamine lyase activity during fecal culture. Trimethylamine lyase genes were only weakly correlated with the activity of the enzymes they encode. Conclusions Fecal microbiome composition does not predict systemic TMAO because, in this case, gene copy number does not predict bacterial metabolic activity. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT01427855.


Subject(s)
Microbiota , Adult , Bacteria/metabolism , Choline/metabolism , Cross-Over Studies , Diet , Feces , Gastrointestinal Microbiome , Humans , Lyases/metabolism , Methylamines/blood
3.
J Biol Chem ; 295(15): 4836-4848, 2020 04 10.
Article in English | MEDLINE | ID: mdl-32098873

ABSTRACT

Apolipoprotein A-I (apoA-I) is the major protein constituent of high-density lipoprotein (HDL) and a target of myeloperoxidase-dependent oxidation in the artery wall. In atherosclerotic lesions, apoA-I exhibits marked oxidative modifications at multiple sites, including Trp72 Site-specific mutagenesis studies have suggested, but have not conclusively shown, that oxidative modification of Trp72 of apoA-I impairs many atheroprotective properties of this lipoprotein. Herein, we used genetic code expansion technology with an engineered Saccharomyces cerevisiae tryptophanyl tRNA-synthetase (Trp-RS):suppressor tRNA pair to insert the noncanonical amino acid 5-hydroxytryptophan (5-OHTrp) at position 72 in recombinant human apoA-I and confirmed site-specific incorporation utilizing MS. In functional characterization studies, 5-OHTrp72 apoA-I (compared with WT apoA-I) exhibited reduced ABC subfamily A member 1 (ABCA1)-dependent cholesterol acceptor activity in vitro (41.73 ± 6.57% inhibition; p < 0.01). Additionally, 5-OHTrp72 apoA-I displayed increased activation and stabilization of paraoxonase 1 (PON1) activity (µmol/min/mg) when compared with WT apoA-I and comparable PON1 activation/stabilization compared with reconstituted HDL (WT apoA-I, 1.92 ± 0.04; 5-OHTrp72 apoA-I, 2.35 ± 0.0; and HDL, 2.33 ± 0.1; p < 0.001, p < 0.001, and p < 0.001, respectively). Following injection into apoA-I-deficient mice, 5-OHTrp72 apoA-I reached plasma levels comparable with those of native apoA-I yet exhibited significantly reduced (48%; p < 0.01) lipidation and evidence of HDL biogenesis. Collectively, these findings unequivocally reveal that site-specific oxidative modification of apoA-I via 5-OHTrp at Trp72 impairs cholesterol efflux and the rate-limiting step of HDL biogenesis both in vitro and in vivo.


Subject(s)
5-Hydroxytryptophan/metabolism , ATP Binding Cassette Transporter 1/metabolism , Apolipoprotein A-I/metabolism , Aryldialkylphosphatase/metabolism , Cholesterol/metabolism , Lipoproteins, HDL/biosynthesis , Tyrosine/metabolism , 5-Hydroxytryptophan/genetics , ATP Binding Cassette Transporter 1/genetics , Animals , Apolipoprotein A-I/genetics , Aryldialkylphosphatase/genetics , Biological Transport , Humans , Mice , Mice, Knockout , Oxidation-Reduction , Protein Binding
4.
Toxins (Basel) ; 11(9)2019 08 23.
Article in English | MEDLINE | ID: mdl-31450746

ABSTRACT

Microcystins are potent hepatotoxins that have become a global health concern in recent years. Their actions in at-risk populations with pre-existing liver disease is unknown. We tested the hypothesis that the No Observed Adverse Effect Level (NOAEL) of Microcystin-LR (MC-LR) established in healthy mice would cause exacerbation of hepatic injury in a murine model (Leprdb/J) of Non-alcoholic Fatty Liver Disease (NAFLD). Ten-week-old male Leprdb/J mice were gavaged with 50 µg/kg, 100 µg/kg MC-LR or vehicle every 48 h for 4 weeks (n = 15-17 mice/group). Early mortality was observed in both the 50 µg/kg (1/17, 6%), and 100 µg/kg (3/17, 18%) MC-LR exposed mice. MC-LR exposure resulted in significant increases in circulating alkaline phosphatase levels, and histopathological markers of hepatic injury as well as significant upregulation of genes associated with hepatotoxicity, necrosis, nongenotoxic hepatocarcinogenicity and oxidative stress response. In addition, we observed exposure dependent changes in protein phosphorylation sites in pathways involved in inflammation, immune function, and response to oxidative stress. These results demonstrate that exposure to MC-LR at levels that are below the NOAEL established in healthy animals results in significant exacerbation of hepatic injury that is accompanied by genetic and phosphoproteomic dysregulation in key signaling pathways in the livers of NAFLD mice.


Subject(s)
Liver/drug effects , Microcystins/toxicity , Non-alcoholic Fatty Liver Disease/chemically induced , Oxidative Stress/drug effects , Water Pollutants, Chemical/toxicity , Animals , Disease Models, Animal , Disease Progression , Dose-Response Relationship, Drug , Liver/metabolism , Liver/pathology , Male , Marine Toxins , Mice , Mice, Inbred Strains , Microcystins/blood , Microcystins/urine , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Organ Size/drug effects , Oxidative Stress/genetics , Proteomics , Survival Analysis , Water Pollutants, Chemical/blood , Water Pollutants, Chemical/urine
5.
Eur Heart J ; 40(32): 2700-2709, 2019 08 21.
Article in English | MEDLINE | ID: mdl-31049589

ABSTRACT

AIMS: Trimethyllysine (TML) serves as a nutrient precursor of the gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) and is associated with incident cardiovascular (CV) events in stable subjects. We examined the relationship between plasma TML levels and incident CV events in patients presenting with acute coronary syndromes (ACS). METHODS AND RESULTS: Plasma levels of TML were quantified in two independent cohorts using mass spectrometry, and its relationship with CV events was investigated. In a Cleveland Cohort (N = 530), comprised of patients presenting to the emergency department with chest pain and suspected ACS, TML was associated with major adverse cardiac events (MACE, myocardial infarction, stroke, need for revascularization, or all-cause mortality) over both 30 days [3rd tertile (T3), adjusted odds ratio (OR) 1.77, 95% confidence interval (CI) 1.04-3.01; P < 0.05] and 6 months (T3, adjusted OR 1.95, 95% CI 1.15-3.32; P < 0.05) of follow-up independent of traditional CV risk factors and indices of renal function. Elevated TML levels were also associated with incident long-term (7-year) all-cause mortality [T3, adjusted hazard ratio (HR) 2.52, 95% CI 1.50-4.24; P < 0.001], and MACE even amongst patients persistently negative for cardiac Troponin T at presentation (e.g. 30-day MACE, T3, adjusted OR 4.49, 95% CI 2.06-9.79; P < 0.001). Trimethyllysine in combination with TMAO showed additive significance for near- and long-term CV events, including patients with 'negative' high-sensitivity Troponin T levels. In a multicentre Swiss Cohort (N = 1683) comprised of ACS patients, similar associations between TML and incident 1-year adverse cardiac risks were observed (e.g. mortality, adjusted T3 HR 2.74, 95% CI 1.28-5.85; P < 0.05; and MACE, adjusted T3 HR 1.55, 95% CI 1.04-2.31; P < 0.05). CONCLUSION: Plasma TML levels, alone and together with TMAO, are associated with both near- and long-term CV events in patients with chest pain and ACS.


Subject(s)
Acute Coronary Syndrome , Lysine/analogs & derivatives , Acute Coronary Syndrome/blood , Acute Coronary Syndrome/diagnosis , Acute Coronary Syndrome/epidemiology , Acute Coronary Syndrome/mortality , Aged , Female , Humans , Lysine/blood , Male , Methylamines/blood , Middle Aged , Prognosis , Prospective Studies
6.
J Clin Invest ; 129(1): 373-387, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30530985

ABSTRACT

BACKGROUND: l-Carnitine, an abundant nutrient in red meat, accelerates atherosclerosis in mice via gut microbiota-dependent formation of trimethylamine (TMA) and trimethylamine N-oxide (TMAO) via a multistep pathway involving an atherogenic intermediate, γ-butyrobetaine (γBB). The contribution of γBB in gut microbiota-dependent l-carnitine metabolism in humans is unknown. METHODS: Omnivores and vegans/vegetarians ingested deuterium-labeled l-carnitine (d3-l-carnitine) or γBB (d9-γBB), and both plasma metabolites and fecal polymicrobial transformations were examined at baseline, following oral antibiotics, or following chronic (≥2 months) l-carnitine supplementation. Human fecal commensals capable of performing each step of the l-carnitine→γBB→TMA transformation were identified. RESULTS: Studies with oral d3-l-carnitine or d9-γBB before versus after antibiotic exposure revealed gut microbiota contribution to the initial 2 steps in a metaorganismal l-carnitine→γBB→TMA→TMAO pathway in subjects. Moreover, a striking increase in d3-TMAO generation was observed in omnivores over vegans/vegetarians (>20-fold; P = 0.001) following oral d3-l-carnitine ingestion, whereas fasting endogenous plasma l-carnitine and γBB levels were similar in vegans/vegetarians (n = 32) versus omnivores (n = 40). Fecal metabolic transformation studies, and oral isotope tracer studies before versus after chronic l-carnitine supplementation, revealed that omnivores and vegans/vegetarians alike rapidly converted carnitine to γBB, whereas the second gut microbial transformation, γBB→TMA, was diet inducible (l-carnitine, omnivorous). Extensive anaerobic subculturing of human feces identified no single commensal capable of l-carnitine→TMA transformation, multiple community members that converted l-carnitine to γBB, and only 1 Clostridiales bacterium, Emergencia timonensis, that converted γBB to TMA. In coculture, E. timonensis promoted the complete l-carnitine→TMA transformation. CONCLUSION: In humans, dietary l-carnitine is converted into the atherosclerosis- and thrombosis-promoting metabolite TMAO via 2 sequential gut microbiota-dependent transformations: (a) initial rapid generation of the atherogenic intermediate γBB, followed by (b) transformation into TMA via low-abundance microbiota in omnivores, and to a markedly lower extent, in vegans/vegetarians. Gut microbiota γBB→TMA/TMAO transformation is induced by omnivorous dietary patterns and chronic l-carnitine exposure. TRIAL REGISTRATION: ClinicalTrials.gov NCT01731236. FUNDING: NIH and Office of Dietary Supplements grants HL103866, HL126827, and DK106000, and the Leducq Foundation.


Subject(s)
Atherosclerosis , Betaine/analogs & derivatives , Carnitine/blood , Clostridiales/metabolism , Gastrointestinal Microbiome , Methylamines/metabolism , Animals , Atherosclerosis/metabolism , Atherosclerosis/microbiology , Atherosclerosis/pathology , Betaine/blood , Female , Humans , Male , Mice , Pilot Projects , Vegans
7.
Eur Heart J ; 40(7): 583-594, 2019 02 14.
Article in English | MEDLINE | ID: mdl-30535398

ABSTRACT

AIMS: Carnitine and choline are major nutrient precursors for gut microbiota-dependent generation of the atherogenic metabolite, trimethylamine N-oxide (TMAO). We performed randomized-controlled dietary intervention studies to explore the impact of chronic dietary patterns on TMAO levels, metabolism and renal excretion. METHODS AND RESULTS: Volunteers (N = 113) were enrolled in a randomized 2-arm (high- or low-saturated fat) crossover design study. Within each arm, three 4-week isocaloric diets (with washout period between each) were evaluated (all meals prepared in metabolic kitchen with 25% calories from protein) to examine the effects of red meat, white meat, or non-meat protein on TMAO metabolism. Trimethylamine N-oxide and other trimethylamine (TMA) related metabolites were quantified at the end of each diet period. A random subset (N = 13) of subjects also participated in heavy isotope tracer studies. Chronic red meat, but not white meat or non-meat ingestion, increased plasma and urine TMAO (each >two-fold; P < 0.0001). Red meat ingestion also significantly reduced fractional renal excretion of TMAO (P < 0.05), but conversely, increased fractional renal excretion of carnitine, and two alternative gut microbiota-generated metabolites of carnitine, γ-butyrobetaine, and crotonobetaine (P < 0.05). Oral isotope challenge revealed red meat or white meat (vs. non-meat) increased TMA and TMAO production from carnitine (P < 0.05 each) but not choline. Dietary-saturated fat failed to impact TMAO or its metabolites. CONCLUSION: Chronic dietary red meat increases systemic TMAO levels through: (i) enhanced dietary precursors; (ii) increased microbial TMA/TMAO production from carnitine, but not choline; and (iii) reduced renal TMAO excretion. Discontinuation of dietary red meat reduces plasma TMAO within 4 weeks.


Subject(s)
Diet , Dietary Proteins , Methylamines/metabolism , Poultry , Red Meat , Renal Elimination/physiology , Adult , Aged , Animals , Cross-Over Studies , Feeding Behavior , Female , Humans , Male , Middle Aged , Reference Values , Young Adult
8.
J Chromatogr A ; 1573: 66-77, 2018 Oct 26.
Article in English | MEDLINE | ID: mdl-30201162

ABSTRACT

The protocols for solid-phase extraction (SPE) of six microcystins (MCs; MC-LR, MC-RR, MC-LA, MC-LF, MC-LW, and MC-YR) from mouse urine, mouse plasma, and human serum are reported. The quantification of those MCs in biofluids was achieved using HPLC-orbitrap-MS in selected-ion monitoring (SIM) mode, and MCs in urine samples were also quantified by ultra-HPLC-triple quadrupole-tandem mass spectrometry (UHPLC-QqQ-MS/MS) in multiple reaction monitoring (MRM) mode. Under optimal conditions, the extraction recoveries of MCs from samples spiked at two different concentrations (1 µg/L and 10 µg/L) ranged from 90.4% to 104.3% with relative standard deviations (RSDs) ≤ 4.7% for mouse urine, 90.4-106.9% with RSDs ≤ 6.3% for mouse plasma, and 90.0-104.8% with RSDs ≤ 5.0% for human serum. Matrix-matched internal standard calibration curves were linear with R2 ≥ 0.9950 for MC-LR, MC-RR and MC-YR, and R2 ≥ 0.9883 for MC-LA, MC-LF, and MC-LW. The limits of quantification (LOQs) in spiked urine samples were ∼0.13 µg/L for MC-LR, MC-RR, and MC-YR, and ∼0.50 µg/L for MC-LA, MC-LF, and MC-LW, while the LOQs in spiked plasma and serum were ∼0.25 µg/L for MC-LR, MC-RR, and MC-YR, and ∼1.00 µg/L for MC-LA, MC-LF, and MC-LW. The developed methods were applied in a proof-of-concept study to quantify urinary and blood concentrations of MC-LR after oral administration to mice. The urine of mice administered 50 µg of MC-LR per kg bodyweight contained on average 1.30 µg/L of MC-LR (n = 8), while mice administered 100 µg of MC-LR per kg bodyweight had average MC-LR concentration of 2.82 µg/L (n = 8). MC-LR was also quantified in the plasma of the same mice. The results showed that increased MC-LR dosage led to larger urinary and plasma MC-LR concentrations and the developed methods were effective for the quantification of MCs in mouse biofluids.


Subject(s)
Blood Chemical Analysis/methods , Chromatography, High Pressure Liquid , Microcystins/blood , Microcystins/urine , Solid Phase Extraction , Tandem Mass Spectrometry , Urinalysis/methods , Animals , Humans , Mice
9.
Nat Med ; 24(9): 1407-1417, 2018 09.
Article in English | MEDLINE | ID: mdl-30082863

ABSTRACT

Trimethylamine N-oxide (TMAO) is a gut microbiota-derived metabolite that enhances both platelet responsiveness and in vivo thrombosis potential in animal models, and TMAO plasma levels predict incident atherothrombotic event risks in human clinical studies. TMAO is formed by gut microbe-dependent metabolism of trimethylamine (TMA) moiety-containing nutrients, which are abundant in a Western diet. Here, using a mechanism-based inhibitor approach targeting a major microbial TMA-generating enzyme pair, CutC and CutD (CutC/D), we developed inhibitors that are potent, time-dependent, and irreversible and that do not affect commensal viability. In animal models, a single oral dose of a CutC/D inhibitor significantly reduced plasma TMAO levels for up to 3 d and rescued diet-induced enhanced platelet responsiveness and thrombus formation, without observable toxicity or increased bleeding risk. The inhibitor selectively accumulated within intestinal microbes to millimolar levels, a concentration over 1-million-fold higher than needed for a therapeutic effect. These studies reveal that mechanism-based inhibition of gut microbial TMA and TMAO production reduces thrombosis potential, a critical adverse complication in heart disease. They also offer a generalizable approach for the selective nonlethal targeting of gut microbial enzymes linked to host disease limiting systemic exposure of the inhibitor in the host.


Subject(s)
Gastrointestinal Microbiome , Thrombosis/microbiology , Animals , Bacteria/drug effects , Bacteria/metabolism , Choline/pharmacology , Diet , Gastrointestinal Microbiome/drug effects , Hexanols/pharmacology , Mice, Inbred C57BL , Oxidoreductases, N-Demethylating/antagonists & inhibitors , Oxidoreductases, N-Demethylating/metabolism , Platelet Aggregation/drug effects
10.
J Am Heart Assoc ; 7(7)2018 03 26.
Article in English | MEDLINE | ID: mdl-29581220

ABSTRACT

BACKGROUND: Intestinal microbiota have been found to be linked to cardiovascular disease via conversion of the dietary compounds choline and carnitine to the atherogenic metabolite TMAO (trimethylamine-N-oxide). Specifically, a vegan diet was associated with decreased plasma TMAO levels and nearly absent TMAO production on carnitine challenge. METHODS AND RESULTS: We performed a double-blind randomized controlled pilot study in which 20 male metabolic syndrome patients were randomized to single lean vegan-donor or autologous fecal microbiota transplantation. At baseline and 2 weeks thereafter, we determined the ability to produce TMAO from d6-choline and d3-carnitine (eg, labeled and unlabeled TMAO in plasma and 24-hour urine after oral ingestion of 250 mg of both isotope-labeled precursor nutrients), and fecal samples were collected for analysis of microbiota composition. 18F-fluorodeoxyglucose positron emission tomography/computed tomography scans of the abdominal aorta, as well as ex vivo peripheral blood mononuclear cell cytokine production assays, were performed. At baseline, fecal microbiota composition differed significantly between vegans and metabolic syndrome patients. With vegan-donor fecal microbiota transplantation, intestinal microbiota composition in metabolic syndrome patients, as monitored by global fecal microbial community structure, changed toward a vegan profile in some of the patients; however, no functional effects from vegan-donor fecal microbiota transplantation were seen on TMAO production, abdominal aortic 18F-fluorodeoxyglucose uptake, or ex vivo cytokine production from peripheral blood mononuclear cells. CONCLUSIONS: Single lean vegan-donor fecal microbiota transplantation in metabolic syndrome patients resulted in detectable changes in intestinal microbiota composition but failed to elicit changes in TMAO production capacity or parameters related to vascular inflammation. CLINICAL TRIAL REGISTRATION: URL: http://www.trialregister.nl. Unique identifier: NTR 4338.


Subject(s)
Bacteria/metabolism , Choline/metabolism , Cytokines/metabolism , Diet, Vegan , Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Inflammation Mediators/metabolism , Metabolic Syndrome/therapy , Methylamines/metabolism , Vasculitis/therapy , Adult , Aged , Carnitine/metabolism , Double-Blind Method , Fecal Microbiota Transplantation/adverse effects , Feces/microbiology , Humans , Male , Metabolic Syndrome/diagnosis , Metabolic Syndrome/microbiology , Middle Aged , Netherlands , Pilot Projects , Time Factors , Treatment Outcome , Vasculitis/diagnosis , Vasculitis/microbiology , Young Adult
11.
Free Radic Biol Med ; 104: 20-31, 2017 03.
Article in English | MEDLINE | ID: mdl-28069522

ABSTRACT

Recent studies reveal 2-aminoadipic acid (2-AAA) is both elevated in subjects at risk for diabetes and mechanistically linked to glucose homeostasis. Prior studies also suggest enrichment of protein-bound 2-AAA as an oxidative post-translational modification of lysyl residues in tissues associated with degenerative diseases of aging. While in vitro studies suggest redox active transition metals or myeloperoxidase (MPO) generated hypochlorous acid (HOCl) may produce protein-bound 2-AAA, the mechanism(s) responsible for generation of 2-AAA during inflammatory diseases are unknown. In initial studies we observed that traditional acid- or base-catalyzed protein hydrolysis methods previously employed to measure tissue 2-AAA can artificially generate protein-bound 2-AAA from an alternative potential lysine oxidative product, lysine nitrile (LysCN). Using a validated protease-based digestion method coupled with stable isotope dilution LC/MS/MS, we now report protein bound 2-AAA and LysCN are both formed by hypochlorous acid (HOCl) and the MPO/H2O2/Cl- system of leukocytes. At low molar ratio of oxidant to target protein Nε-lysine moiety, 2-AAA is formed via an initial Nε-monochloramine intermediate, which ultimately produces the more stable 2-AAA end-product via sequential generation of transient imine and semialdehyde intermediates. At higher oxidant to target protein Nε-lysine amine ratios, protein-bound LysCN is formed via initial generation of a lysine Nε-dichloramine intermediate. In studies employing MPO knockout mice and an acute inflammation model, we show that both free and protein-bound 2-AAA, and in lower yield, protein-bound LysCN, are formed by MPO in vivo during inflammation. Finally, both 2-AAA and to lesser extent LysCN are shown to be enriched in human aortic atherosclerotic plaque, a tissue known to harbor multiple MPO-catalyzed protein oxidation products. Collectively, these results show that MPO-mediated oxidation of protein lysyl residues serves as a mechanism for producing 2-AAA and LysCN in vivo. These studies further support involvement of MPO-catalyzed oxidative processes in both the development of atherosclerosis and diabetes risk.


Subject(s)
2-Aminoadipic Acid/metabolism , Inflammation/metabolism , Oxidative Stress/genetics , Peroxidase/genetics , Proteins/metabolism , Animals , Atherosclerosis/metabolism , Atherosclerosis/pathology , Diabetes Mellitus/metabolism , Diabetes Mellitus/pathology , Humans , Hydrogen Peroxide/metabolism , Hypochlorous Acid/metabolism , Inflammation/pathology , Leukocytes/metabolism , Leukocytes/pathology , Lysine/metabolism , Mice , Mice, Knockout , Nitriles/metabolism , Oxidation-Reduction , Peroxidase/metabolism , Protein Binding , Protein Processing, Post-Translational/genetics , Risk Factors , Tandem Mass Spectrometry
12.
J Am Coll Cardiol ; 67(22): 2620-8, 2016 06 07.
Article in English | MEDLINE | ID: mdl-27256833

ABSTRACT

BACKGROUND: Trimethylamine N-oxide (TMAO), a gut microbiota metabolite from dietary phosphatidylcholine, has mechanistic links to atherosclerotic coronary artery disease (CAD) pathogenesis and is associated with adverse outcomes. OBJECTIVES: This study sought to examine the relationship between plasma TMAO levels and the complexity and burden of CAD and degree of subclinical myonecrosis. METHODS: We studied 353 consecutive stable patients with evidence of atherosclerotic CAD detected by elective coronary angiography between 2012 and 2014. Their high-sensitivity cardiac troponin T (hs-cTnT) levels were measured. SYNTAX (Synergy Between Percutaneous Coronary Intervention With Taxus and Cardiac Surgery) scores and lesion characteristics were used to quantify atherosclerotic burden. Fasting plasma TMAO was measured by mass spectrometry. RESULTS: In this prospective cohort study, the median TMAO level was 5.5 µM (interquartile range [IQR]: 3.4 to 9.8 µM), the median SYNTAX score was 11.0 (IQR: 4.0 to 18.5), and 289 (81.9%), 40 (11.3%), and 24 (6.8%) patients had low (0 to 22), intermediate (23 to 32), and high (≥33) SYNTAX scores, respectively. Plasma TMAO levels correlated (all p < 0.0001) with the SYNTAX score (r = 0.61), SYNTAX score II (r = 0.62), and hs-cTnT (r = 0.29). Adjusting for traditional risk factors, body mass index, medications, lesion characteristic, renal function, and high-sensitivity C-reactive protein, elevated TMAO levels remained independently associated with a higher SYNTAX score (odds ratio [OR]: 4.82; p < 0.0001), SYNTAX score II (OR: 1.88; p = 0.0001), but were not associated with subclinical myonecrosis (OR: 1.14; p = 0.3147). Elevated TMAO level was an independent predictor of the presence of diffuse lesions, even after adjustments for traditional risk factors and for hs-cTnT (OR: 2.05; 95% confidence interval: 1.45 to 2.90; p = 0.0001). CONCLUSIONS: Fasting plasma TMAO levels are an independent predictor of a high atherosclerotic burden in patients with CAD.


Subject(s)
Coronary Artery Disease/blood , Coronary Artery Disease/diagnostic imaging , Methylamines/blood , Severity of Illness Index , Aged , Biomarkers/blood , Cohort Studies , Coronary Angiography , Female , Humans , Male , Mass Spectrometry , Middle Aged , Troponin T/blood
13.
J Biol Chem ; 291(4): 1890-1904, 2016 Jan 22.
Article in English | MEDLINE | ID: mdl-26567339

ABSTRACT

Paraoxonase 1 (PON1) is a high density lipoprotein (HDL)-associated protein with atherosclerosis-protective and systemic anti-oxidant functions. We recently showed that PON1, myeloperoxidase, and HDL bind to one another in vivo forming a functional ternary complex (Huang, Y., Wu, Z., Riwanto, M., Gao, S., Levison, B. S., Gu, X., Fu, X., Wagner, M. A., Besler, C., Gerstenecker, G., Zhang, R., Li, X. M., Didonato, A. J., Gogonea, V., Tang, W. H., et al. (2013) J. Clin. Invest. 123, 3815-3828). However, specific residues on PON1 involved in the HDL-PON1 interaction remain unclear. Unambiguous identification of protein residues involved in docking interactions to lipid surfaces poses considerable methodological challenges. Here we describe a new strategy that uses a novel synthetic photoactivatable and click chemistry-taggable phospholipid probe, which, when incorporated into HDL, was used to identify amino acid residues on PON1 that directly interact with the lipoprotein phospholipid surface. Several specific PON1 residues (Leu-9, Tyr-185, and Tyr-293) were identified through covalent cross-links with the lipid probes using affinity isolation coupled to liquid chromatography with on-line tandem mass spectrometry. Based upon the crystal structure for PON1, the identified residues are all localized in relatively close proximity on the surface of PON1, defining a domain that binds to the HDL lipid surface. Site-specific mutagenesis of the identified PON1 residues (Leu-9, Tyr-185, and Tyr-293), coupled with functional studies, reveals their importance in PON1 binding to HDL and both PON1 catalytic activity and stability. Specifically, the residues identified on PON1 provide important structural insights into the PON1-HDL interaction. More generally, the new photoactivatable and affinity-tagged lipid probe developed herein should prove to be a valuable tool for identifying contact sites supporting protein interactions with lipid interfaces such as found on cell membranes or lipoproteins.


Subject(s)
Aryldialkylphosphatase/chemistry , Aryldialkylphosphatase/metabolism , Lipoproteins, HDL/metabolism , Amino Acid Motifs , Apolipoprotein A-I/genetics , Apolipoprotein A-I/metabolism , Aryldialkylphosphatase/genetics , Catalysis , Crystallography, X-Ray , Humans , Mutagenesis, Site-Directed , Protein Binding
14.
Cell ; 163(7): 1585-95, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26687352

ABSTRACT

Trimethylamine (TMA) N-oxide (TMAO), a gut-microbiota-dependent metabolite, both enhances atherosclerosis in animal models and is associated with cardiovascular risks in clinical studies. Here, we investigate the impact of targeted inhibition of the first step in TMAO generation, commensal microbial TMA production, on diet-induced atherosclerosis. A structural analog of choline, 3,3-dimethyl-1-butanol (DMB), is shown to non-lethally inhibit TMA formation from cultured microbes, to inhibit distinct microbial TMA lyases, and to both inhibit TMA production from physiologic polymicrobial cultures (e.g., intestinal contents, human feces) and reduce TMAO levels in mice fed a high-choline or L-carnitine diet. DMB inhibited choline diet-enhanced endogenous macrophage foam cell formation and atherosclerotic lesion development in apolipoprotein e(-/-) mice without alterations in circulating cholesterol levels. The present studies suggest that targeting gut microbial production of TMA specifically and non-lethal microbial inhibitors in general may serve as a potential therapeutic approach for the treatment of cardiometabolic diseases.


Subject(s)
Atherosclerosis/drug therapy , Choline/analogs & derivatives , Gastrointestinal Tract/microbiology , Hexanols/administration & dosage , Lyases/antagonists & inhibitors , Methylamines/metabolism , Animals , Apolipoproteins E/genetics , Atherosclerosis/metabolism , Cholesterol/metabolism , Choline/metabolism , Diet , Feces/chemistry , Foam Cells/metabolism , Humans , Lyases/metabolism , Mice , Mice, Inbred C57BL , Microbiota
15.
J Biol Chem ; 290(9): 5647-60, 2015 Feb 27.
Article in English | MEDLINE | ID: mdl-25550161

ABSTRACT

Recent studies indicate both clinical and mechanistic links between atherosclerotic heart disease and intestinal microbial metabolism of certain dietary nutrients producing trimethylamine N-oxide (TMAO). Here we test the hypothesis that gut microbial transplantation can transmit choline diet-induced TMAO production and atherosclerosis susceptibility. First, a strong association was noted between atherosclerotic plaque and plasma TMAO levels in a mouse diversity panel (n = 22 strains, r = 0.38; p = 0.0001). An atherosclerosis-prone and high TMAO-producing strain, C57BL/6J, and an atherosclerosis-resistant and low TMAO-producing strain, NZW/LacJ, were selected as donors for cecal microbial transplantation into apolipoprotein e null mice in which resident intestinal microbes were first suppressed with antibiotics. Trimethylamine (TMA) and TMAO levels were initially higher in recipients on choline diet that received cecal microbes from C57BL/6J inbred mice; however, durability of choline diet-dependent differences in TMA/TMAO levels was not maintained to the end of the study. Mice receiving C57BL/6J cecal microbes demonstrated choline diet-dependent enhancement in atherosclerotic plaque burden as compared with recipients of NZW/LacJ microbes. Microbial DNA analyses in feces and cecum revealed transplantation of donor microbial community features into recipients with differences in taxa proportions between donor strains that were transmissible to recipients and that tended to show coincident proportions with TMAO levels. Proportions of specific taxa were also identified that correlated with plasma TMAO levels in donors and recipients and with atherosclerotic lesion area in recipients. Atherosclerosis susceptibility may be transmitted via transplantation of gut microbiota. Gut microbes may thus represent a novel therapeutic target for modulating atherosclerosis susceptibility.


Subject(s)
Atherosclerosis/microbiology , Cecum/microbiology , Disease Susceptibility/microbiology , Gastrointestinal Tract/microbiology , Microbiota/physiology , Animals , Aorta/metabolism , Aorta/pathology , Atherosclerosis/blood , Atherosclerosis/etiology , Choline/administration & dosage , Diet/adverse effects , Disease Susceptibility/blood , Disease Susceptibility/complications , Female , Host-Pathogen Interactions , Humans , Male , Methylamines/blood , Methylamines/metabolism , Mice, Inbred AKR , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Inbred DBA , Mice, Inbred Strains , Mice, Knockout , Mice, Transgenic , Species Specificity
16.
Circ Res ; 116(3): 448-55, 2015 Jan 30.
Article in English | MEDLINE | ID: mdl-25599331

ABSTRACT

RATIONALE: Trimethylamine-N-oxide (TMAO), a gut microbial-dependent metabolite of dietary choline, phosphatidylcholine (lecithin), and l-carnitine, is elevated in chronic kidney diseases (CKD) and associated with coronary artery disease pathogenesis. OBJECTIVE: To both investigate the clinical prognostic value of TMAO in subjects with versus without CKD, and test the hypothesis that TMAO plays a direct contributory role in the development and progression of renal dysfunction. METHODS AND RESULTS: We first examined the relationship between fasting plasma TMAO and all-cause mortality over 5-year follow-up in 521 stable subjects with CKD (estimated glomerular filtration rate, <60 mL/min per 1.73 m(2)). Median TMAO level among CKD subjects was 7.9 µmol/L (interquartile range, 5.2-12.4 µmol/L), which was markedly higher (P<0.001) than in non-CKD subjects (n=3166). Within CKD subjects, higher (fourth versus first quartile) plasma TMAO level was associated with a 2.8-fold increased mortality risk. After adjustments for traditional risk factors, high-sensitivity C-reactive protein, estimated glomerular filtration rate, elevated TMAO levels remained predictive of 5-year mortality risk (hazard ratio, 1.93; 95% confidence interval, 1.13-3.29; P<0.05). TMAO provided significant incremental prognostic value (net reclassification index, 17.26%; P<0.001 and differences in area under receiver operator characteristic curve, 63.26% versus 65.95%; P=0.036). Among non-CKD subjects, elevated TMAO levels portend poorer prognosis within cohorts of high and low cystatin C. In animal models, elevated dietary choline or TMAO directly led to progressive renal tubulointerstitial fibrosis and dysfunction. CONCLUSIONS: Plasma TMAO levels are both elevated in patients with CKD and portend poorer long-term survival. Chronic dietary exposures that increase TMAO directly contributes to progressive renal fibrosis and dysfunction in animal models.


Subject(s)
Methylamines/toxicity , Microbiota , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency/diagnosis , Aged , Aged, 80 and over , Animals , Biomarkers/blood , Case-Control Studies , Female , Humans , Intestines/microbiology , Male , Methylamines/blood , Mice , Mice, Inbred C57BL , Middle Aged , Prognosis , Renal Insufficiency/etiology , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/microbiology , Risk Factors
17.
Cell Metab ; 20(5): 799-812, 2014 Nov 04.
Article in English | MEDLINE | ID: mdl-25440057

ABSTRACT

L-carnitine, a nutrient in red meat, was recently reported to accelerate atherosclerosis via a metaorganismal pathway involving gut microbial trimethylamine (TMA) formation and host hepatic conversion into trimethylamine-N-oxide (TMAO). Herein, we show that following L-carnitine ingestion, γ-butyrobetaine (γBB) is produced as an intermediary metabolite by gut microbes at a site anatomically proximal to and at a rate ∼1,000-fold higher than the formation of TMA. Moreover, we show that γBB is the major gut microbial metabolite formed from dietary L-carnitine in mice, is converted into TMA and TMAO in a gut microbiota-dependent manner (like dietary L-carnitine), and accelerates atherosclerosis. Gut microbial composition and functional metabolic studies reveal that distinct taxa are associated with the production of γBB or TMA/TMAO from dietary L-carnitine. Moreover, despite their close structural similarity, chronic dietary exposure to L-carnitine or γBB promotes development of functionally distinct microbial communities optimized for the metabolism of L-carnitine or γBB, respectively.


Subject(s)
Atherosclerosis/microbiology , Betaine/analogs & derivatives , Carnitine/metabolism , Gastrointestinal Tract/microbiology , Methylamines/metabolism , Animals , Atherosclerosis/metabolism , Betaine/metabolism , Female , Gastrointestinal Tract/metabolism , Mice , Mice, Inbred C57BL , Microbiota
18.
J Am Coll Cardiol ; 64(18): 1908-14, 2014 Nov 04.
Article in English | MEDLINE | ID: mdl-25444145

ABSTRACT

BACKGROUND: Altered intestinal function is prevalent in patients with heart failure (HF), but its role in adverse outcomes is unclear. OBJECTIVES: This study investigated the potential pathophysiological contributions of intestinal microbiota in HF. METHODS: We examined the relationship between fasting plasma trimethylamine-N-oxide (TMAO) and all-cause mortality over a 5-year follow-up in 720 patients with stable HF. RESULTS: The median TMAO level was 5.0 µM, which was higher than in subjects without HF (3.5 µM; p < 0.001). There was modest but significant correlation between TMAO concentrations and B-type natriuretic peptide (BNP) levels (r = 0.23; p < 0.001). Higher plasma TMAO levels were associated with a 3.4-fold increased mortality risk. Following adjustments for traditional risk factors and BNP levels, elevated TMAO levels remained predictive of 5-year mortality risk (hazard ratio [HR]: 2.2; 95% CI: 1.42 to 3.43; p < 0.001), as well as following the addition of estimated glomerular filtration rate to the model (HR: 1.75; 95% CI: 1.07 to 2.86; p < 0.001). CONCLUSIONS: High TMAO levels were observed in patients with HF, and elevated TMAO levels portended higher long-term mortality risk independent of traditional risk factors and cardiorenal indexes.


Subject(s)
Heart Failure/mortality , Intestinal Mucosa/metabolism , Methylamines/blood , Microbiota , Risk Assessment/methods , Aged , Biomarkers/blood , Female , Follow-Up Studies , Heart Failure/blood , Humans , Intestines/microbiology , Kaplan-Meier Estimate , Male , Mass Spectrometry , Middle Aged , Ohio/epidemiology , Prognosis , Prospective Studies , Survival Rate/trends , Time Factors
19.
Anal Biochem ; 455: 35-40, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24704102

ABSTRACT

Trimethylamine-N-oxide (TMAO) levels in blood predict future risk for major adverse cardiac events including myocardial infarction, stroke, and death. Thus, the rapid determination of circulating TMAO concentration is of clinical interest. Here we report a method to measure TMAO in biological matrices by stable isotope dilution liquid chromatography tandem mass spectrometry (LC/MS/MS) with lower and upper limits of quantification of 0.05 and >200µM, respectively. Spike and recovery studies demonstrate an accuracy at low (0.5µM), mid (5µM), and high (100µM) levels of 98.2, 97.3, and 101.6%, respectively. Additional assay performance metrics include intraday and interday coefficients of variance of <6.4 and <9.9%, respectively, across the range of TMAO levels. Stability studies reveal that TMAO in plasma is stable both during storage at -80°C for 5years and to multiple freeze thaw cycles. Fasting plasma normal range studies among apparently healthy subjects (n=349) show a range of 0.73-126µM, median (interquartile range) levels of 3.45 (2.25-5.79)µM, and increasing values with age. The LC/MS/MS-based assay reported should be of value for further studies evaluating TMAO as a risk marker and for examining the effect of dietary, pharmacologic, and environmental factors on TMAO levels.


Subject(s)
Chromatography, Liquid/methods , Methylamines/blood , Tandem Mass Spectrometry/methods , Adult , Aged , Deuterium , Fasting , Female , Humans , Indicator Dilution Techniques , Limit of Detection , Male , Middle Aged , Reference Values , Reproducibility of Results , Spectrometry, Mass, Electrospray Ionization/methods
20.
Stem Cells ; 32(7): 1746-58, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24737733

ABSTRACT

Glioblastoma (GBM) contains a self-renewing, tumorigenic cancer stem cell (CSC) population which contributes to tumor propagation and therapeutic resistance. While the tumor microenvironment is essential to CSC self-renewal, the mechanisms by which CSCs sense and respond to microenvironmental conditions are poorly understood. Scavenger receptors are a broad class of membrane receptors well characterized on immune cells and instrumental in sensing apoptotic cellular debris and modified lipids. Here, we provide evidence that CSCs selectively use the scavenger receptor CD36 to promote their maintenance using patient-derived CSCs and in vivo xenograft models. CD36 expression was observed in GBM cells in addition to previously described cell types including endothelial cells, macrophages, and microglia. CD36 was enriched in CSCs and was able to functionally distinguish self-renewing cells. CD36 was coexpressed with integrin alpha 6 and CD133, previously described CSC markers, and CD36 reduction resulted in concomitant loss of integrin alpha 6 expression, self-renewal, and tumor initiation capacity. We confirmed oxidized phospholipids, ligands of CD36, were present in GBM and found that the proliferation of CSCs, but not non-CSCs, increased with exposure to oxidized low-density lipoprotein. CD36 was an informative biomarker of malignancy and negatively correlated to patient prognosis. These results provide a paradigm for CSCs to thrive by the selective enhanced expression of scavenger receptors, providing survival, and metabolic advantages.


Subject(s)
Brain Neoplasms/metabolism , CD36 Antigens/metabolism , Glioblastoma/metabolism , Neoplastic Stem Cells/metabolism , Animals , Brain Neoplasms/mortality , Brain Neoplasms/pathology , CD36 Antigens/genetics , Cell Proliferation , Disease Progression , Female , Gene Expression , Glioblastoma/mortality , Glioblastoma/pathology , Kaplan-Meier Estimate , Lipoproteins, LDL/physiology , Mice, Nude , Neoplasm Transplantation , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...