Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (67)2012 Sep 09.
Article in English | MEDLINE | ID: mdl-22987015

ABSTRACT

In response to injury, blood coagulation is activated and results in generation of the clotting protease, thrombin. Thrombin cleaves fibrinogen to fibrin which forms an insoluble clot that stops hemorrhage. Factor V (FV) in its activated form, FVa, is a critical cofactor for the protease FXa and accelerator of thrombin generation during fibrin clot formation as part of prothrombinase (1, 2). Manual FV assays have been described (3, 4), but they are time consuming and subjective. Automated FV assays have been reported (5-7), but the analyzer and reagents are expensive and generally provide only the clot time, not the rate and extent of fibrin formation. The microplate platform is preferred for measuring enzyme-catalyzed events because of convenience, time, cost, small volume, continuous monitoring, and high-throughput (8, 9). Microplate assays have been reported for clot lysis (10), platelet aggregation (11), and coagulation Factors (12), but not for FV activity in human plasma. The goal of the method was to develop a microplate assay that measures FV activity during fibrin formation in human plasma. This novel microplate method outlines a simple, inexpensive, and rapid assay of FV activity in human plasma. The assay utilizes a kinetic microplate reader to monitor the absorbance change at 405 nm during fibrin formation in human plasma (Figure 1) (13). The assay accurately measures the time, initial rate, and extent of fibrin clot formation. It requires only µl quantities of plasma, is complete in 6 min, has high-throughput, is sensitive to 24-80 pM FV, and measures the amount of unintentionally activated (1-stage activity) and thrombin-activated FV (2-stage activity) to obtain a complete assessment of its total functional activity (2-stage activity - 1-stage activity). Disseminated intravascular coagulation (DIC) is an acquired coagulopathy that most often develops from pre-existing infections (14). DIC is associated with a poor prognosis and increases mortality above the pre-existing pathology (15). The assay was used to show that in 9 patients with DIC, the FV 1-stage, 2-stage, and total activities were decreased, on average, by 54%, 44%, and 42%, respectively, compared with normal pooled human reference plasma (NHP). The FV microplate assay is easily adaptable to measure the activity of any coagulation factor. This assay will increase our understanding of FV biochemistry through a more accurate and complete measurement of its activity in research and clinical settings. This information will positively impact healthcare environments through earlier diagnosis and development of more effective treatments for coagulation disorders, such as DIC.


Subject(s)
Blood Coagulation Tests/methods , Factor V/metabolism , Adolescent , Adult , Blood Coagulation Tests/instrumentation , Factor V/analysis , Female , Humans , Male , Middle Aged , Young Adult
2.
Thromb J ; 9(1): 11, 2011 Jun 28.
Article in English | MEDLINE | ID: mdl-21711555

ABSTRACT

BACKGROUND: Factor V (FV) in its activated form, FVa, is a critical regulator of thrombin generation during fibrin clot formation. There is a need of a simple, fast, and inexpensive microplate-based coagulation assay to measure the functional activity of FV in human plasma. The objective of this study was to develop a microplate-based assay that measures FV coagulation activity during clot formation in human plasma, which is currently not available. METHODS: The FV assay requires a kinetic microplate reader to measure the change in absorbance at 405nm during fibrin formation in human plasma. The FV assay accurately measures the time, initial rate, and extent of fibrin clot formation in human plasma. RESULTS: The FV microplate assay is simple, fast, economical, sensitive to approx 24-80pM, and multiple samples may be analyzed simultaneously. All the required materials are commercially available. Standard curves of time or initial rate of fibrin clot formation vs FV activity in the 1-stage assay (Without activation by thrombin) may be used to measure FV activity in samples of human plasma. The assay was used to demonstrate that in nine patients with disseminated intravascular coagulation (DIC), the FV 1-stage, 2-stage (With activation by thrombin), and total (2-stage activity - 1-stage activity) activities were decreased, on average, by approximately 54%, 44%, and 42%, respectively, from prolonged clot times when compared to normal pooled human reference plasma (NHP). The results indicate that the FV in the DIC patient plasmas supported both a delayed and slower rate of fibrin clot formation compared with NHP; however, the extent of fibrin clot formation in the DIC patients remained largely unchanged from that observed with NHP. CONCLUSIONS: The FV microplate assay may be easily adapted to measure the activity of any coagulation factor using the appropriate factor-deficient plasma and clot initiating reagent. The microplate assay will find use in both research and clinical laboratories to provide measurement of the functional coagulation activity of FV in human plasma.

SELECTION OF CITATIONS
SEARCH DETAIL
...