Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
J Gen Physiol ; 156(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38990175

ABSTRACT

L-type CaV1.2 current (ICa,L) links electrical excitation to contraction in cardiac myocytes. ICa,L is tightly regulated to control cardiac output. Rad is a Ras-related, monomeric protein that binds to L-type calcium channel ß subunits (CaVß) to promote inhibition of ICa,L. In addition to CaVß interaction conferred by the Rad core motif, the highly conserved Rad C-terminus can direct membrane association in vitro and inhibition of ICa,L in immortalized cell lines. In this work, we test the hypothesis that in cardiomyocytes the polybasic C-terminus of Rad confers t-tubular localization, and that membrane targeting is required for Rad-dependent ICa,L regulation. We introduced a 3xFlag epitope to the N-terminus of the endogenous mouse Rrad gene to facilitate analysis of subcellular localization. Full-length 3xFlag-Rad (Flag-Rad) mice were compared with a second transgenic mouse model, in which the extended polybasic C-termini of 3xFlag-Rad was truncated at alanine 277 (Flag-RadΔCT). Ventricular cardiomyocytes were isolated for anti-Flag-Rad immunocytochemistry and ex vivo electrophysiology. Full-length Flag-Rad showed a repeating t-tubular pattern whereas Flag-RadΔCT failed to display membrane association. ICa,L in Flag-RadΔCT cardiomyocytes showed a hyperpolarized activation midpoint and an increase in maximal conductance. Additionally, current decay was faster in Flag-RadΔCT cells. Myocardial ICa,L in a Rad C-terminal deletion model phenocopies ICa,L modulated in response to ß-AR stimulation. Mechanistically, the polybasic Rad C-terminus confers CaV1.2 regulation via membrane association. Interfering with Rad membrane association constitutes a specific target for boosting heart function as a treatment for heart failure with reduced ejection fraction.


Subject(s)
Calcium Channels, L-Type , Myocytes, Cardiac , Animals , Calcium Channels, L-Type/metabolism , Calcium Channels, L-Type/genetics , Mice , Myocytes, Cardiac/metabolism , Cell Membrane/metabolism , Monomeric GTP-Binding Proteins/metabolism , Monomeric GTP-Binding Proteins/genetics , Mice, Transgenic , ras Proteins
3.
NPJ Regen Med ; 6(1): 74, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34789749

ABSTRACT

Complex tissue regeneration is extremely rare among adult mammals. An exception, however, is the superior tissue healing of multiple organs in spiny mice (Acomys). While Acomys species exhibit the remarkable ability to heal complex tissue with minimal scarring, little is known about their cardiac structure and response to cardiac injury. In this study, we first examined baseline Acomys cardiac anatomy and function in comparison with commonly used inbred and outbred laboratory Mus strains (C57BL6 and CFW). While our results demonstrated comparable cardiac anatomy and function between Acomys and Mus, Acomys exhibited a higher percentage of cardiomyocytes displaying distinct characteristics. In response to myocardial infarction, all animals experienced a comparable level of initial cardiac damage. However, Acomys demonstrated superior ischemic tolerance and cytoprotection in response to injury as evidenced by cardiac functional stabilization, higher survival rate, and smaller scar size 50 days after injury compared to the inbred and outbred mouse strains. This phenomenon correlated with enhanced endothelial cell proliferation, increased angiogenesis, and medium vessel maturation in the peri-infarct and infarct regions. Overall, these findings demonstrate augmented myocardial preservation in spiny mice post-MI and establish Acomys as a new adult mammalian model for cardiac research.

4.
J Gen Physiol ; 153(9)2021 09 06.
Article in English | MEDLINE | ID: mdl-34269819

ABSTRACT

The L-type Ca2+ channel (LTCC) provides trigger calcium to initiate cardiac contraction in a graded fashion that is regulated by L-type calcium current (ICa,L) amplitude and kinetics. Inactivation of LTCC is controlled to fine-tune calcium flux and is governed by voltage-dependent inactivation (VDI) and calcium-dependent inactivation (CDI). Rad is a monomeric G protein that regulates ICa,L and has recently been shown to be critical to ß-adrenergic receptor (ß-AR) modulation of ICa,L. Our previous work showed that cardiomyocyte-specific Rad knockout (cRadKO) resulted in elevated systolic function, underpinned by an increase in peak ICa,L, but without pathological remodeling. Here, we sought to test whether Rad-depleted LTCC contributes to the fight-or-flight response independently of ß-AR function, resulting in ICa,L kinetic modifications to homeostatically balance cardiomyocyte function. We recorded whole-cell ICa,L from ventricular cardiomyocytes from inducible cRadKO and control (CTRL) mice. The kinetics of ICa,L stimulated with isoproterenol in CTRL cardiomyocytes were indistinguishable from those of unstimulated cRadKO cardiomyocytes. CDI and VDI are both enhanced in cRadKO cardiomyocytes without differences in action potential duration or QT interval. To confirm that Rad loss modulates LTCC independently of ß-AR stimulation, we crossed a ß1,ß2-AR double-knockout mouse with cRadKO, resulting in a Rad-inducible triple-knockout mouse. Deletion of Rad in cardiomyocytes that do not express ß1,ß2-AR still yielded modulated ICa,L and elevated basal heart function. Thus, in the absence of Rad, increased Ca2+ influx is homeostatically balanced by accelerated CDI and VDI. Our results indicate that the absence of Rad can modulate the LTCC without contribution of ß1,ß2-AR signaling and that Rad deletion supersedes ß-AR signaling to the LTCC to enhance in vivo heart function.


Subject(s)
Calcium , Myocytes, Cardiac , Animals , Calcium/metabolism , Calcium Channels, L-Type/genetics , Isoproterenol/pharmacology , Mice , Myocytes, Cardiac/metabolism , Receptors, Adrenergic, beta/metabolism
6.
J Mol Cell Cardiol ; 154: 60-69, 2021 05.
Article in English | MEDLINE | ID: mdl-33556393

ABSTRACT

Sinoatrial node cardiomyocytes (SANcm) possess automatic, rhythmic electrical activity. SAN rate is influenced by autonomic nervous system input, including sympathetic nerve increases of heart rate (HR) via activation of ß-adrenergic receptor signaling cascade (ß-AR). L-type calcium channel (LTCC) activity contributes to membrane depolarization and is a central target of ß-AR signaling. Recent studies revealed that the small G-protein Rad plays a central role in ß-adrenergic receptor directed modulation of LTCC. These studies have identified a conserved mechanism in which ß-AR stimulation results in PKA-dependent Rad phosphorylation: depletion of Rad from the LTCC complex, which is proposed to relieve the constitutive inhibition of CaV1.2 imposed by Rad association. Here, using a transgenic mouse model permitting conditional cardiomyocyte selective Rad ablation, we examine the contribution of Rad to the control of SANcm LTCC current (ICa,L) and sinus rhythm. Single cell analysis from a recent published database indicates that Rad is expressed in SANcm, and we show that SANcm ICa,L was significantly increased in dispersed SANcm following Rad silencing compared to those from CTRL hearts. Moreover, cRadKO SANcm ICa,L was not further increased with ß-AR agonists. We also evaluated heart rhythm in vivo using radiotelemetered ECG recordings in ambulating mice. In vivo, intrinsic HR is significantly elevated in cRadKO. During the sleep phase cRadKO also show elevated HR, and during the active phase there is no significant difference. Rad-deletion had no significant effect on heart rate variability. These results are consistent with Rad governing LTCC function under relatively low sympathetic drive conditions to contribute to slower HR during the diurnal sleep phase HR. In the absence of Rad, the tonic modulated SANcm ICa,L promotes elevated sinus HR. Future novel therapeutics for bradycardia targeting Rad - LTCC can thus elevate HR while retaining ßAR responsiveness.


Subject(s)
Calcium Channels, L-Type/metabolism , Heart Rate , Ion Channel Gating , Monomeric GTP-Binding Proteins/metabolism , Myocardium/metabolism , Animals , Calcium Channels, L-Type/genetics , Mice , Mice, Transgenic , Monomeric GTP-Binding Proteins/genetics , Myocytes, Cardiac/metabolism , Receptors, Adrenergic, beta/metabolism
7.
ACS Appl Bio Mater ; 4(2): 1655-1667, 2021 02 15.
Article in English | MEDLINE | ID: mdl-35014513

ABSTRACT

Mesenchymal stem cell (MSC) therapy has been widely tested in clinical trials to promote healing post-myocardial infarction. However, low cell retention and the need for a large donor cell number in human studies remain a key challenge for clinical translation. Natural biomaterials such as gelatin are ideally suited as scaffolds to deliver and enhance cell engraftment after transplantation. A potential drawback of MSC encapsulation in the hydrogel is that the bulky matrix may limit their biological function and interaction with the surrounding tissue microenvironment that conveys important injury signals. To overcome this limitation, we adopted a gelatin methacrylate (gelMA) cell-coating technique that photocross-links gelatin on the individual cell surface at the nanoscale. The present study investigated the cardiac protection of gelMA coated, hypoxia preconditioned MSCs (gelMA-MSCs) in a murine myocardial infarction (MI) model. We demonstrate that the direct injection of gelMA-MSC results in significantly higher myocardial engraftment 7 days after MI compared to uncoated MSCs. GelMA-MSC further amplified MSC benefits resulting in enhanced cardioprotection as measured by cardiac function, scar size, and angiogenesis. Improved MSC cardiac retention also led to a greater cardiac immunomodulatory function after injury. Taken together, this study demonstrated the efficacy of gelMA-MSCs in treating cardiac injury with a promising potential to reduce the need for donor MSCs through enhanced myocardial engraftment.


Subject(s)
Cell Survival/genetics , Mesenchymal Stem Cells/metabolism , Myocardium/metabolism , Animals , Humans , Mice , Polymers/metabolism
8.
Sci Rep ; 10(1): 16596, 2020 10 06.
Article in English | MEDLINE | ID: mdl-33024189

ABSTRACT

A growing body of evidence shows that altering the inflammatory response by alternative macrophage polarization is protective against complications related to acute myocardial infarction (MI). We have previously shown that oral azithromycin (AZM), initiated prior to MI, reduces inflammation and its negative sequelae on the myocardium. Here, we investigated the immunomodulatory role of a liposomal AZM formulation (L-AZM) in a clinically relevant model to enhance its therapeutic potency and avoid off-target effects. L-AZM (40 or 10 mg/kg, IV) was administered immediately post-MI and compared to free AZM (F-AZM). L-AZM reduced cardiac toxicity and associated mortality by 50% in mice. We observed a significant shift favoring reparatory/anti-inflammatory macrophages with L-AZM formulation. L-AZM use resulted in a remarkable decrease in cardiac inflammatory neutrophils and the infiltration of inflammatory monocytes. Immune cell modulation was associated with the downregulation of pro-inflammatory genes and the upregulation of anti-inflammatory genes. The immunomodulatory effects of L-AZM were associated with a reduction in cardiac cell death and scar size as well as enhanced angiogenesis. Overall, L-AZM use enhanced cardiac recovery and survival after MI. Importantly, L-AZM was protective from F-AZM cardiac off-target effects. We demonstrate that the liposomal formulation of AZM enhances the drug's efficacy and safety in an animal model of acute myocardial injury. This is the first study to establish the immunomodulatory properties of liposomal AZM formulations. Our findings strongly support clinical trials using L-AZM as a novel and clinically relevant therapeutic target to improve cardiac recovery and reduce heart failure post-MI in humans.


Subject(s)
Azithromycin/administration & dosage , Azithromycin/pharmacology , Cardiotonic Agents , Drug Compounding , Drug Delivery Systems , Immunologic Factors , Liposomes , Myocardial Infarction/drug therapy , Myocardial Infarction/immunology , Animals , Disease Models, Animal , Macrophage Activation/drug effects , Male , Mice, Inbred C57BL , Myocardial Infarction/pathology
9.
J Mol Cell Cardiol ; 149: 95-114, 2020 12.
Article in English | MEDLINE | ID: mdl-33017574

ABSTRACT

OBJECTIVE: Acute myocardial infarction (AMI) initiates pathological inflammation which aggravates tissue damage and causes heart failure. Lysophosphatidic acid (LPA), produced by autotaxin (ATX), promotes inflammation and the development of atherosclerosis. The role of ATX/LPA signaling nexus in cardiac inflammation and resulting adverse cardiac remodeling is poorly understood. APPROACH AND RESULTS: We assessed autotaxin activity and LPA levels in relation to cardiac and systemic inflammation in AMI patients and C57BL/6 (WT) mice. Human and murine peripheral blood and cardiac tissue samples showed elevated levels of ATX activity, LPA, and inflammatory cells following AMI and there was strong correlation between LPA levels and circulating inflammatory cells. In a gain of function model, lipid phosphate phosphatase-3 (LPP3) specific inducible knock out (Mx1-Plpp3Δ) showed higher systemic and cardiac inflammation after AMI compared to littermate controls (Mx1-Plpp3fl/fl); and a corresponding increase in bone marrow progenitor cell count and proliferation. Moreover, in Mx1- Plpp3Δ mice, cardiac functional recovery was reduced with corresponding increases in adverse cardiac remodeling and scar size (as assessed by echocardiography and Masson's Trichrome staining). To examine the effect of ATX/LPA nexus inhibition, we treated WT mice with the specific pharmacological inhibitor, PF8380, twice a day for 7 days post AMI. Inhibition of the ATX/LPA signaling nexus resulted in significant reduction in post-AMI inflammatory response, leading to favorable cardiac functional recovery, reduced scar size and enhanced angiogenesis. CONCLUSION: ATX/LPA signaling nexus plays an important role in modulating inflammation after AMI and targeting this mechanism represents a novel therapeutic target for patients presenting with acute myocardial injury.


Subject(s)
Inflammation/pathology , Myocardial Infarction/enzymology , Myocardial Infarction/physiopathology , Myocardium/enzymology , Phosphoric Diester Hydrolases/metabolism , Vascular Remodeling , Animals , Benzoxazoles/pharmacology , Cell Count , Cell Movement/drug effects , Female , Gene Deletion , Humans , Inflammation/genetics , Interferon-alpha/metabolism , Interferon-beta/metabolism , Lysophospholipids/metabolism , Macrophages/drug effects , Macrophages/metabolism , Male , Mice, Inbred C57BL , Middle Aged , Myelopoiesis , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/genetics , Myocardium/pathology , Phosphatidate Phosphatase/metabolism , Piperazines/pharmacology , Recovery of Function/drug effects , Up-Regulation/genetics , Wound Healing
10.
J Biol Chem ; 295(9): 2676-2686, 2020 02 28.
Article in English | MEDLINE | ID: mdl-31980460

ABSTRACT

MS-based metabolomics methods are powerful techniques to map the complex and interconnected metabolic pathways of the heart; however, normalization of metabolite abundance to sample input in heart tissues remains a technical challenge. Herein, we describe an improved GC-MS-based metabolomics workflow that uses insoluble protein-derived glutamate for the normalization of metabolites within each sample and includes normalization to protein-derived amino acids to reduce biological variation and detect small metabolic changes. Moreover, glycogen is measured within the metabolomics workflow. We applied this workflow to study heart metabolism by first comparing two different methods of heart removal: the Langendorff heart method (reverse aortic perfusion) and in situ freezing of mouse heart with a modified tissue freeze-clamp approach. We then used the in situ freezing method to study the effects of acute ß-adrenergic receptor stimulation (through isoproterenol (ISO) treatment) on heart metabolism. Using our workflow and within minutes, ISO reduced the levels of metabolites involved in glycogen metabolism, glycolysis, and the Krebs cycle, but the levels of pentose phosphate pathway metabolites and of many free amino acids remained unchanged. This observation was coupled to a 6-fold increase in phosphorylated adenosine nucleotide abundance. These results support the notion that ISO acutely accelerates oxidative metabolism of glucose to meet the ATP demand required to support increased heart rate and cardiac output. In summary, our MS-based metabolomics workflow enables improved quantification of cardiac metabolites and may also be compatible with other methods such as LC or capillary electrophoresis.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Metabolomics/methods , Workflow , Animals , Heart/physiology , Mice , Myocardium/metabolism , Reference Standards
11.
J Biol Chem ; 294(28): 10913-10927, 2019 07 12.
Article in English | MEDLINE | ID: mdl-31147441

ABSTRACT

Existing therapies to improve heart function target ß-adrenergic receptor (ß-AR) signaling and Ca2+ handling and often lead to adverse outcomes. This underscores an unmet need for positive inotropes that improve heart function without any adverse effects. The GTPase Ras associated with diabetes (RAD) regulates L-type Ca2+ channel (LTCC) current (ICa,L). Global RAD-knockout mice (gRAD-/-) have elevated Ca2+ handling and increased cardiac hypertrophy, but RAD is expressed also in noncardiac tissues, suggesting the possibility that pathological remodeling is due also to noncardiac effects. Here, we engineered a myocardial-restricted inducible RAD-knockout mouse (RADΔ/Δ). Using an array of methods and techniques, including single-cell electrophysiological and calcium transient recordings, echocardiography, and radiotelemetry monitoring, we found that RAD deficiency results in a sustained increase of inotropy without structural or functional remodeling of the heart. ICa,L was significantly increased, with RAD loss conferring a ß-AR-modulated phenotype on basal ICa,L Cardiomyocytes from RADΔ/Δ hearts exhibited enhanced cytosolic Ca2+ handling, increased contractile function, elevated sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2a) expression, and faster lusitropy. These results argue that myocardial RAD ablation promotes a beneficial elevation in Ca2+ dynamics, which would obviate a need for increased ß-AR signaling to improve cardiac function.


Subject(s)
Myocardial Contraction/physiology , Myocardium/metabolism , ras Proteins/metabolism , Animals , Calcium/metabolism , Calcium Channels, L-Type/metabolism , Calcium Channels, L-Type/physiology , Calcium Signaling/physiology , Cardiomegaly/metabolism , GTP Phosphohydrolases/metabolism , Heart Failure/genetics , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Myocytes, Cardiac/metabolism , Receptors, Adrenergic, beta/metabolism , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , ras Proteins/genetics
12.
Am J Physiol Cell Physiol ; 316(5): C649-C654, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30840493

ABSTRACT

Myonuclei gained during exercise-induced skeletal muscle hypertrophy may be long-lasting and could facilitate future muscle adaptability after deconditioning, a concept colloquially termed "muscle memory." The evidence for this is limited, mostly due to the lack of a murine exercise-training paradigm that is nonsurgical and reversible. To address this limitation, we developed a novel progressive weighted-wheel-running (PoWeR) model of murine exercise training to test whether myonuclei gained during exercise persist after detraining. We hypothesized that myonuclei acquired during training-induced hypertrophy would remain following loss of muscle mass with detraining. Singly housed female C57BL/6J mice performed 8 wk of PoWeR, while another group performed 8 wk of PoWeR followed by 12 wk of detraining. Age-matched sedentary cage-dwelling mice served as untrained controls. Eight weeks of PoWeR yielded significant plantaris muscle fiber hypertrophy, a shift to a more oxidative phenotype, and greater myonuclear density than untrained mice. After 12 wk of detraining, the plantaris muscle returned to an untrained phenotype with fewer myonuclei. A finding of fewer myonuclei simultaneously with plantaris deconditioning argues against a muscle memory mechanism mediated by elevated myonuclear density in primarily fast-twitch muscle. PoWeR is a novel, practical, and easy-to-deploy approach for eliciting robust hypertrophy in mice, and our findings can inform future research on the mechanisms underlying skeletal muscle adaptive potential and muscle memory.


Subject(s)
Muscle Fibers, Skeletal/physiology , Physical Conditioning, Animal/methods , Physical Conditioning, Animal/physiology , Weight-Bearing/physiology , Animals , Female , Hypertrophy/pathology , Mice , Mice, Inbred C57BL , Muscle Fibers, Skeletal/pathology
13.
JACC Basic Transl Sci ; 3(1): 83-96, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29732439

ABSTRACT

The protein Rad interacts with the LTCC to modulate trigger Ca2+, hence to govern contractility. Reducing Rad levels increases cardiac output. Ablation of Rad also attenuated the inflammatory response following acute myocardial infarction (AMI). Future studies to target deletion of Rad in the heart could be conducted to establish a novel treatment paradigm whereby pathologically stressed hearts would be given a safe, stable positive inotropic support without arrhythmias and without pathological structural remodeling. Future investigations will also focus on establishing inhibitors of Rad, and testing the efficacy of Rad-deletion in cardioprotection relative to the time of onset of AMI.

14.
J Cardiovasc Transl Res ; 9(5-6): 432-444, 2016 12.
Article in English | MEDLINE | ID: mdl-27798760

ABSTRACT

Sympathetic stimulation modulates L-type calcium channel (LTCC) gating to contribute to increased systolic heart function. Rad is a monomeric G-protein that interacts with LTCC. Genetic deletion of Rad (Rad-/-) renders LTCC in a sympathomimetic state. The study goal was to use a clinically inspired pharmacological stress echocardiography test, including analysis of global strain, to determine whether Rad-/- confers tonic positive inotropic heart function. Sarcomere dynamics and strain showed partial parallel isoproterenol (ISO) responsiveness for wild-type (WT) and for Rad-/-. Rad-/- basal inotropy was elevated compared to WT but was less responsiveness to ISO. Rad protein levels were lower in human patients with end-stage non-ischemic heart failure. These results show that Rad reduction provides a stable inotropic response rooted in sarcomere level function. Thus, reduced Rad levels in heart failure patients may be a compensatory response to need for increased output in the setting of HF. Rad deletion suggests a future therapeutic direction for inotropic support.


Subject(s)
Cardiomegaly/metabolism , Gene Deletion , Heart Rate , Heart/innervation , Myocardial Contraction , Sympathetic Nervous System/physiopathology , ras Proteins/deficiency , Animals , Calcium Channels, L-Type/metabolism , Cardiomegaly/diagnostic imaging , Cardiomegaly/genetics , Cardiomegaly/physiopathology , Case-Control Studies , Echocardiography, Stress/methods , Genotype , Heart Failure/metabolism , Heart Failure/physiopathology , Heart Rate/drug effects , Humans , Isoproterenol/administration & dosage , Male , Mice, Inbred C57BL , Mice, Knockout , Myocardial Contraction/drug effects , Myocardium/metabolism , Myocardium/pathology , Phenotype , Sarcomeres/metabolism , Sarcomeres/pathology , Sympathetic Nervous System/drug effects , Sympathomimetics/administration & dosage , Ventricular Remodeling , ras Proteins/genetics , ras Proteins/metabolism
15.
J Am Soc Echocardiogr ; 27(5): 561-7, 2014 May.
Article in English | MEDLINE | ID: mdl-24513240

ABSTRACT

BACKGROUND: Racial differences in carotid intima-media thickness (cIMT) have been suggested to be associated with the disproportionally high prevalence of cardiovascular disease in black adults. The objective of this study was to evaluate the effects of cardiovascular risk factors on the racial differences seen in cIMT in obese children. METHODS: Obese subjects aged 4 to 21 years were recruited prospectively. Height, weight, blood pressure, fasting insulin, glucose, lipid panel, high-sensitivity C-reactive protein, and body composition by dual-energy x-ray absorptiometry were obtained. B-mode carotid imaging was analyzed by a single blinded physician. RESULTS: A total of 120 subjects (46 white, 74 black) were enrolled. Black subjects exhibited greater cIMT (0.45 ± 0.03 vs 0.43 ± 0.02 cm, P < .01) and higher lean body mass index (19.3 ± 3.4 vs 17.3 ± 3.2 kg/m², P = .02) than white subjects. Simple linear regression revealed modest associations between mean cIMT and race (R = 0.52, P < .01), systolic blood pressure (R = 0.47, P < .01), and lean body mass (R = 0.51, P < .01). On multivariate regression analysis, lean body mass remained the only measure to maintain a statistically significant relationship with mean cIMT (P < .01). CONCLUSIONS: Black subjects demonstrated greater cIMT than white subjects. The relationship between race and cIMT disappeared when lean body mass was accounted for. Future studies assessing the association of cardiovascular disease risk factors to cIMT in obese children should include lean body mass in the analysis.


Subject(s)
Black or African American/statistics & numerical data , Body Mass Index , Carotid Intima-Media Thickness/statistics & numerical data , Obesity/ethnology , Thinness/diagnostic imaging , Thinness/ethnology , White People/statistics & numerical data , Adolescent , Child , Child, Preschool , Comorbidity , Female , Humans , Male , Obesity/diagnosis , Prevalence , Prospective Studies , Risk Factors , South Carolina/epidemiology , Young Adult
16.
Cardiol Res ; 2(1): 48-49, 2011 Feb.
Article in English | MEDLINE | ID: mdl-28348661

ABSTRACT

Sepsis could produce myocardial depression and typically it affects the left ventricle (LV). Sepsis could also affect right ventricle (RV), in addition to the interdependence with LV. RV pressure may be elevated secondary to pulmonary vasoconstriction, leading to RV dysfunction. Unlike LV, RV is poorly prepared to compensate for acute overload. Aggressive volume replacement may be vital to maintain RV function, but excess hydration can cause RV dilation, decreased LV diastolic filling, and reduced cardiac output. In patients having signs of inadequate cardiac output even after initial volume resuscitation, RV function should be assessed with echocardiogram. If RV dysfunction is noted, then fluid therapy should be guided by CVP measurements. If cardiac output increases with increasing CVP, maintaining higher filling pressures on the right side is indicated. On the other hand, increasing CVP with worsening of the cardiac output could worsen the RV dysfunction. In addition to the fluid management, treatment of other reversible causes like acidosis and hypoxia is also a key.

SELECTION OF CITATIONS
SEARCH DETAIL
...