Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 115(15): 152002, 2015 Oct 09.
Article in English | MEDLINE | ID: mdl-26550717

ABSTRACT

The rare decay B→πℓ^{+}ℓ^{-} arises from b→d flavor-changing neutral currents and could be sensitive to physics beyond the standard model. Here, we present the first ab initio QCD calculation of the B→π tensor form factor f_{T}. Together with the vector and scalar form factors f_{+} and f_{0} from our companion work [J. A. Bailey et al., Phys. Rev. D 92, 014024 (2015)], these parametrize the hadronic contribution to B→π semileptonic decays in any extension of the standard model. We obtain the total branching ratio BR(B^{+}→π^{+}µ^{+}µ^{-})=20.4(2.1)×10^{-9} in the standard model, which is the most precise theoretical determination to date, and agrees with the recent measurement from the LHCb experiment [R. Aaij et al., J. High Energy Phys. 12 (2012) 125].


Subject(s)
Elementary Particles , Models, Theoretical , Nuclear Physics , Protons
2.
Phys Rev Lett ; 112(11): 112001, 2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24702353

ABSTRACT

We calculate the kaon semileptonic form factor f+(0) from lattice QCD, working, for the first time, at the physical light-quark masses. We use gauge configurations generated by the MILC Collaboration with Nf = 2 + 1 + 1 flavors of sea quarks, which incorporate the effects of dynamical charm quarks as well as those of up, down, and strange. We employ data at three lattice spacings to extrapolate to the continuum limit. Our result, f+(0) = 0.9704(32), where the error is the total statistical plus systematic uncertainty added in quadrature, is the most precise determination to date. Combining our result with the latest experimental measurements of K semileptonic decays, one obtains the Cabibbo-Kobayashi-Maskawa matrix element |V(us)| = 0.22290(74)(52), where the first error is from f+(0) and the second one is from experiment. In the first-row test of Cabibbo-Kobayashi-Maskawa unitarity, the error stemming from |V(us)| is now comparable to that from |V(ud)|.

3.
Phys Rev Lett ; 112(1): 012002, 2014 Jan 10.
Article in English | MEDLINE | ID: mdl-24483888

ABSTRACT

Using numerical simulations of lattice QCD we calculate the effect of an external magnetic field on the equation of state of the quark-gluon plasma. The results are obtained using a Taylor expansion of the pressure with respect to the magnetic field for the first time. The coefficients of the expansion are computed to second order in the magnetic field. Our setup for the external magnetic field avoids complications arising from toroidal boundary conditions, making a Taylor series expansion straightforward. This study is exploratory and is meant to serve as a proof of principle.

4.
Phys Rev Lett ; 110(17): 172003, 2013 Apr 26.
Article in English | MEDLINE | ID: mdl-23679710

ABSTRACT

A calculation of the ratio of leptonic decay constants f(K+)/f(π+) makes possible a precise determination of the ratio of Cabibbo-Kobayashi-Maskawa (CKM) matrix elements |V(us)|/|V(ud)| in the standard model, and places a stringent constraint on the scale of new physics that would lead to deviations from unitarity in the first row of the CKM matrix. We compute f(K+)/f(π+) numerically in unquenched lattice QCD using gauge-field ensembles recently generated that include four flavors of dynamical quarks: up, down, strange, and charm. We analyze data at four lattice spacings a ≈ 0.06, 0.09, 0.12, and 0.15 fm with simulated pion masses down to the physical value 135 MeV. We obtain f(K+)/f(π+) = 1.1947(26)(37), where the errors are statistical and total systematic, respectively. This is our first physics result from our N(f) = 2+1+1 ensembles, and the first calculation of f(K+)/f(π+) from lattice-QCD simulations at the physical point. Our result is the most precise lattice-QCD determination of f(K+)/f(π+), with an error comparable to the current world average. When combined with experimental measurements of the leptonic branching fractions, it leads to a precise determination of |V(us)|/|V(ud)| = 0.2309(9)(4) where the errors are theoretical and experimental, respectively.

5.
Phys Rev Lett ; 109(7): 071802, 2012 Aug 17.
Article in English | MEDLINE | ID: mdl-23006357

ABSTRACT

The semileptonic decay channel B→Dτν is sensitive to the presence of a scalar current, such as that mediated by a charged-Higgs boson. Recently, the BABAR experiment reported the first observation of the exclusive semileptonic decay B→Dτ(-)ν, finding an approximately 2σ disagreement with the standard-model prediction for the ratio R(D)=BR(B→Dτν)/BR(B→Dℓν), where ℓ = e,µ. We compute this ratio of branching fractions using hadronic form factors computed in unquenched lattice QCD and obtain R(D)=0.316(12)(7), where the errors are statistical and total systematic, respectively. This result is the first standard-model calculation of R(D) from ab initio full QCD. Its error is smaller than that of previous estimates, primarily due to the reduced uncertainty in the scalar form factor f(0)(q(2)). Our determination of R(D) is approximately 1σ higher than previous estimates and, thus, reduces the tension with experiment. We also compute R(D) in models with electrically charged scalar exchange, such as the type-II two-Higgs-doublet model. Once again, our result is consistent with, but approximately 1σ higher than, previous estimates for phenomenologically relevant values of the scalar coupling in the type-II model. As a by-product of our calculation, we also present the standard-model prediction for the longitudinal-polarization ratio P(L)(D)=0.325(4)(3).

6.
Phys Rev Lett ; 95(12): 122002, 2005 Sep 16.
Article in English | MEDLINE | ID: mdl-16197067

ABSTRACT

We present the first lattice QCD calculation with realistic sea quark content of the D+-meson decay constant f(D+). We use the MILC Collaboration's publicly available ensembles of lattice gauge fields, which have a quark sea with two flavors (up and down) much lighter than a third (strange). We obtain f(D+)=201+/-3+/-17 MeV, where the errors are statistical and a combination of systematic errors. We also obtain f(Ds)=249+/-3+/-16 MeV for the Ds meson.

SELECTION OF CITATIONS
SEARCH DETAIL
...