Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(53): 113649-113659, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37851245

ABSTRACT

Dissolved organic matter (DOM) from biosolids can alter the sorption of orthophosphate (inorganic phosphorus (IP)) to soils and, therefore, affect the bioavailability of IP. It is not clear how clay mineralogy and solution composition interfere with DOM effects on IP sorption by soils. Hence, we studied the effect of DOM on IP sorption to five semi-arid soils dominated by either illite/smectite (I/S) or kaolinite clays. IP sorption isotherms were constructed in either NaCl or CaCl2 background solution, with and without the addition of DOM. The IP sorption capacity maxima (SMAX, Langmuir model) of the I/S soils were 33-102% higher in the presence of CaCl2, as compared to NaCl. Although DOM had no effect on the IP-SMAX in the presence of CaCl2, it increased the IP-SMAX by 35-59% in the presence of the NaCl solution. Surprisingly, DOM sorption to the I/S soils was 30-90% greater in the presence of a Na+-dominated solution, as compared to a Ca2+-dominated solution. In contrast to the I/S soils, the SMAX of the kaolinitic soil was not affected by the background electrolyte (Na+, Ca2+) or the addition of DOM. Furthermore, the addition of IP reduced the sorption of DOM to the kaolinitic soil (by up to 50%) in both background electrolyte solutions. These results highlight the contrasting roles of divalent and monovalent cations in conjunction with DOM in IP sorption to semi-arid I/S soils. We propose a new approach based on two conceptual mechanisms to explain the DOM's enhancement of IP sorption to I/S soils. (1) Under dispersion conditions in the Na+-dominated solutions, Ca2+-mediated DOM-IP complexes bind to the clay's negative planar surfaces. (2) Under flocculation conditions in the Ca+-dominated solutions, the distance between adjacent platelets decreases, reducing both the electronegative charge spillover and Ca2+ bridge-mediated DOM sorption. In contrast, the addition of DOM to kaolinite, a multi-platelet clay with a low isomorphic negative charge, reduces IP sorption due to competitive sorption on the clay's broken edges.


Subject(s)
Soil Pollutants , Soil , Clay , Dissolved Organic Matter , Biosolids , Kaolin , Phosphates , Sodium Chloride , Calcium Chloride , Soil Pollutants/analysis , Adsorption
2.
J Environ Manage ; 305: 114361, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34963100

ABSTRACT

The impact of biosolid compost on the adsorption of orthophosphate (IP) to Mediterranean-type soils was studied. Eight soils were amended with a stable biosolid compost (ADSC) at 9:1 and 97:3 ratios (w/w). Four soils were amended with the dissolved organic matter (DOM) fraction of the ADSC at the amount added at the 9:1 mixture (810 mg C kg-1). Soils and their 9:1 soil‒ADSC mixtures were incubated for seven years. The maximum ADSC IP-adsorption capacity (SMAX, Langmuir model) at native pH (≈7.5) was 850 mg P kg-1. Mixing the ADSC with the soils increased their SMAX values by ca. 150 and 190 mg P kg-1 in the 9:1 and 97:3 mixtures, which exceeded additivity by 50% and 575%. The addition of DOM similarly increased the SMAX of three out of the four soils. Following the incubation, the soils' organic-C decreased by 34% and the ADSC-derived OC decreased by 60%. Still, the corresponding soil's and mixtures' average levels of labile IP either increased (by 60%) or remained steady (at Ì´30% of total-P). Incubation increased the SMAX of three soils and five soil‒ADSC mixtures and decreased their binding affinity (k), trends which were also reflected in the quantity/intensity parameters. This study showed that amending semi-arid Mediterranean soils with stable biosolids, and their long-term oxidative co-stabilization is conducive to increase their IP binding capacity and bioavailability. Finally, the often similar effects of the compost and its DOM on IP adsorption merits further research regarding the role of cation (Ca+2) bridging in IP‒DOM‒solid phase interactions.


Subject(s)
Soil Pollutants , Soil , Adsorption , Biosolids , Dissolved Organic Matter , Phosphates , Soil Pollutants/analysis
3.
Waste Manag ; 113: 145-153, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32531662

ABSTRACT

Phosphorous dissolution and ensuing chemical redistribution of P in organic amendments (OA) were studied by applying a modified Hedley selective fractionation to eight water-extracted and unextracted OAs. Nine 7-day, repeated extractions were applied using a 60:1 water:dry OA (v:w) ratio at pH 8. Eight OAs were tested including five biosolids, broiler litter, dairy manure compost and municipal solid waste compost. The average PWEP9 (percent water-extractable P following nine water-extraction cycles) for the OAs was 65 ± 9% and all of the fractions, with almost no exceptions, contributed to that figure. Organic P was depleted by mineralization (in non-stabilized sludges and broiler litter) or dissolution (stabilized composts) or both (in lime-treated biosolids) and that depletion was completed within 1-2 extraction cycles. Only the organic P of the MSWC remained undepleted. Strong linear correlations were observed between the WEP9 values of the OAs (0.8-21 g P kg-1) and several more easily determined properties, including total P content (r2 = 0.84), organic N content (r2 = 0.82), the sum of Hedley's more easily dissolved SRP (soluble reactive P) and OP (r2 = 0.95), and the total P and SRP extracted by 16 h of shaking with the bicarbonate reagent (r2 ≥ 0.90). These findings indicate that if greater P availability is desired, the stabilization of biosolids and biowastes should be minimized. These insights into the relationships between OA characteristics and P solubility may benefit the use of OAs in agricultural systems and aid assessments of the environmental significance of their use.


Subject(s)
Manure , Soil , Animals , Biosolids , Chickens , Phosphorus
4.
Appl Environ Microbiol ; 78(18): 6576-82, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22773643

ABSTRACT

Soilless medium-based horticulture systems are highly prevalent due to their capacity to optimize growth of high-cash crops. However, these systems are highly dynamic and more sensitive to physiochemical and pH perturbations than traditional soil-based systems, especially during nitrification associated with ammonia-based fertilization. The objective of this study was to assess the impact of nitrification-generated acidification on ammonia oxidation rates and nitrifying bacterial community dynamics in soilless growth media. To achieve this goal, perlite soilless growth medium from a commercial bell pepper greenhouse was incubated with ammonium in bench-scale microcosm experiments. Initial quantitative real-time PCR analysis indicated that betaproteobacterial ammonia oxidizers were significantly more abundant than ammonia-oxidizing archaea, and therefore, research focused on this group. Ammonia oxidation rates were highest between 0 and 9 days, when pH values dropped from 7.4 to 4.9. Pyrosequencing of betaproteobacterial ammonia-oxidizing amoA gene fragments indicated that r-strategist-like Nitrosomonas was the dominant ammonia-oxidizing bacterial genus during this period, seemingly due to the high ammonium concentration and optimal growth conditions in the soilless media. Reduction of pH to levels below 4.8 resulted in a significant decrease in both ammonia oxidation rates and the diversity of ammonia-oxidizing bacteria, with increased relative abundance of the r-strategist-like Nitrosospira. Nitrite oxidizers (Nitrospira and Nitrobacter) were on the whole more abundant and less sensitive to acidification than ammonia oxidizers. This study demonstrates that nitrification and nitrifying bacterial community dynamics in high-N-load intensive soilless growth media may be significantly different from those in in-terra agricultural systems.


Subject(s)
Acids/toxicity , Bacteria/drug effects , Bacteria/growth & development , Biota , Nitrification/drug effects , Ammonia/metabolism , Bacteria/classification , Culture Media/chemistry , Hydrogen-Ion Concentration , Oxidation-Reduction , Oxidoreductases/genetics , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...