Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Res ; 166: 42-54, 2021 May.
Article in English | MEDLINE | ID: mdl-32461140

ABSTRACT

Unprovoked seizures in the late period of traumatic brain injury (TBI) occur in almost 20% of humans and experimental animals, psychiatric comorbidities being common in both situations. The aim of the study was to evaluate epileptiform activity in the early period of TBI induced by lateral fluid percussion brain injury in adult male Srague-Dawley rats and to reveal potential behavioral and pathomorphological correlates of early electrophysiological alterations. One week after TBI the group of animals was remarkably heterogeneous regarding the incidence of bifrontal 7-Hz spikes and spike-wave discharges (SWDs). It consisted of 3 typical groups: a) rats with low baseline and high post-craniotomy SWD level; b)with constantly low both baseline and post-craniotomy SWD levels; c) constantly high both baseline and post-craniotomy SWD levels. Rats with augmented SWD occurrence after TBI demonstrated freezing episodes accompanying SWDs as well as increased anxiety-like behavior (difficulty of choosing). The discharges were definitely associated with sleep phases. The incidence of SWDs positively correlated with the area of glial activation in the neocortex but not in the hippocampus.The translational potential of the data is revealing new pathophysiological links between epileptiform activity appearance, direct cortical and distant hippocampal damage and anxiety-like behavior, putative early predictors of late posttraumatic pathology.


Subject(s)
Brain Injuries, Traumatic , Patient Discharge , Animals , Brain Injuries, Traumatic/complications , Disease Models, Animal , Electroencephalography , Humans , Male , Rats , Rats, Sprague-Dawley , Seizures
2.
Metab Brain Dis ; 31(2): 445-54, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26780087

ABSTRACT

Hippocampus is believed to be selectively vulnerable to stress. We hypothesized that this phenomenon may be mediated by relatively high vulnerability to neuroinflammation related to impairments of local glucocorticoid metabolism and signaling. We have evaluated inflammatory responses induced by acute or chronic combined stress in the cerebral cortex and hippocampus as well as circulating and brain corticosterone (CS) levels as well as expression of corticosterone target genes. The hippocampus showed higher stress-induced expression of the proinflammatory cytokine IL-1ß as compared to the cerebral cortex. A month after the termination of the chronic stress, IL-1ß mRNA in the cerebral cortex reached control level, while in the hippocampus it remained significantly increased. Under chronic stress, the maladaptive inflammatory response in hippocampus was accompanied by a significant increase in local CS levels, as compared to cerebral cortex. Under acute stress, the increased CS level induced changes in CS-regulated genes expression (CRF and IGF1), while this phenomenon was not observed after chronic stress. Thus, the hippocampus appears to be more vulnerable to stress-induced inflammation as compared to the neocortex and demonstrates persistent inflammatory response induced by chronic stress. Stress-induced maladaptive inflammatory response is associated with a selective increase in hippocampal CS accumulation and changes in CS signaling.


Subject(s)
Cerebral Cortex/metabolism , Corticosterone/metabolism , Hippocampus/metabolism , Inflammation/metabolism , Signal Transduction/physiology , Stress, Physiological , Animals , Interleukin-1beta/metabolism , Male , RNA, Messenger/metabolism , Rats, Wistar
3.
Acta Neurobiol Exp (Wars) ; 76(4): 324-333, 2016.
Article in English | MEDLINE | ID: mdl-28094823

ABSTRACT

Depression is the most common form of mental disability in the world. Depressive episodes may be precipitated by severe acute stressful events or by mild chronic stressors. Studies on the mechanisms of depression require both appropriate experimental models (most of them based on the exposure of animals to chronic stressors), and appropriate tests for assessment of depressive states. In this study male Wistar rats were exposed to two different chronic stress paradigms: an eight-week chronic unpredictable mild stress or a two-week combined chronic stress. The behavioral effects of stress were evaluated using sucrose preference, forced swim and open field tests. After the exposure to chronic unpredictable mild stress, anhedonia was developed, activity in the open field increased, while no changes in the duration of passive floating could be detected. After chronic combined stress, anhedonia was also evident, whereas behavior in the open field and forced swim test did not change. The levels of corticosterone in the blood and brain structures involved in stress-response did not differ from control in both experiments. The absence of significant changes in corticosterone levels and passive floating may be indicative of the adaptation of animals to chronic stress. Anhedonia appears to be a more sensitive indicator of depressive-like behavioral effects of chronic stress as compared to behavior in the forced swim or open field tests.


Subject(s)
Depression/etiology , Depression/physiopathology , Disease Models, Animal , Electroshock/adverse effects , Social Isolation/psychology , Animals , Brain/metabolism , Corticosterone/metabolism , Depression/blood , Depression/pathology , Exploratory Behavior , Food Preferences , Locomotion , Male , Rats , Rats, Wistar , Sucrose/administration & dosage , Swimming/psychology , Time Factors
4.
Metab Brain Dis ; 27(4): 431-41, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23010934

ABSTRACT

Effects of a chronic combined unpredictable stress on activities of two cell death-related proteases, calpain and cathepsin B, were studied along with indices of nitrergic system in rat brain structures. Male Wistar rats were subjected to a 2-week-long combined stress (combination of unpaired flash light and moderate footshock associated with a white noise session). Stress resulted in a significant loss in the body and thymus weight and increased defecation in the open field test, though neither motor and exploratory activity, nor plasma corticosterone differed from the respective control levels. Decreased calpain activity and increased cathepsin B activity were demonstrated in the hippocampus of stressed rats (previously we have shown that caspase-3 activity was significantly suppressed in the brain of rats subjected to same type of stress). A significant reduction in the number of NOS-containing neurons was accompanied by a chronic stressinduced decline in NOS activity in the neocortex. Similar changes were observed in the hippocampus. However, levels of NO metabolites were elevated in both structures. Thus, stress-induced structural modifications in the brain may be mediated by disturbances in the nitrergic system and increased lysosomal proteolysis.


Subject(s)
Brain Chemistry/physiology , Cell Death/physiology , Nitric Oxide/metabolism , Peptide Hydrolases/physiology , Stress, Psychological/metabolism , Animals , Body Weight/physiology , Calpain/metabolism , Caspase 3/metabolism , Cathepsin B/metabolism , Cell Count , Corticosterone/metabolism , Hippocampus/metabolism , Immunohistochemistry , Male , Nitrates/metabolism , Nitric Oxide Synthase/metabolism , Nitrites/metabolism , Organ Size/physiology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...