Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Mol Genet Metab ; 142(1): 108345, 2024 May.
Article in English | MEDLINE | ID: mdl-38387306

ABSTRACT

Mutations in MMACHC cause cobalamin C disease (cblC, OMIM 277400), the commonest inborn error of vitamin B12 metabolism. In cblC, deficient activation of cobalamin results in methylcobalamin and adenosylcobalamin deficiency, elevating methylmalonic acid (MMA) and total plasma homocysteine (tHcy). We retrospectively reviewed the medical files of seven cblC patients: three compound heterozygotes for the MMACHC (NM_015506.3) missense variant c.158T>C p.(Leu53Pro) in trans with the common pathogenic mutation c.271dupA (p.(Arg91Lysfs*14), "compounds"), and four c.271dupA homozygotes ("homozygotes"). Compounds receiving hydroxocobalamin intramuscular injection monotherapy had age-appropriate psychomotor performance and normal ophthalmological examinations. In contrast, c.271dupA homozygotes showed marked psychomotor retardation, retinopathy and feeding problems despite penta-therapy (hydroxocobalamin, betaine, folinic acid, l-carnitine and acetylsalicylic acid). Pretreatment levels of plasma and urine MMA and tHcy were higher in c.271dupA homozygotes than in compounds. Under treatment, levels of the compounds approached or entered the reference range but not those of c.271dupA homozygotes (tHcy: compounds 9.8-32.9 µM, homozygotes 41.6-106.8 (normal (N) < 14); plasma MMA: compounds 0.14-0.81 µM, homozygotes, 10.4-61 (N < 0.4); urine MMA: compounds 1.75-48 mmol/mol creatinine, homozygotes 143-493 (N < 10)). Patient skin fibroblasts all had low cobalamin uptake, but this was milder in compound cells. Also, the distribution pattern of cobalamin species was qualitatively different between cells from compounds and from homozygotes. Compared to the classic cblC phenotype presented by c.271dupA homozygous patients, c.[158T>C];[271dupA] compounds had mild clinical and biochemical phenotypes and responded strikingly to hydroxocobalamin monotherapy.


Subject(s)
Carrier Proteins , Hydroxocobalamin , Phenotype , Vitamin B 12 Deficiency , Vitamin B 12 , Humans , Hydroxocobalamin/administration & dosage , Hydroxocobalamin/therapeutic use , Male , Female , Vitamin B 12 Deficiency/genetics , Vitamin B 12 Deficiency/drug therapy , Vitamin B 12 Deficiency/blood , Vitamin B 12/blood , Child, Preschool , Carrier Proteins/genetics , Retrospective Studies , Oxidoreductases/genetics , Child , Methylmalonic Acid/blood , Homocystinuria/drug therapy , Homocystinuria/genetics , Infant , Mutation, Missense , Homozygote , Heterozygote , Homocysteine/blood , Adolescent , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/drug therapy , Amino Acid Metabolism, Inborn Errors/blood , Adult
2.
JCEM Case Rep ; 2(2): luae004, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38249444

ABSTRACT

Tendinous xanthomas are usually a sign of genetic dyslipidemias and are said to be pathognomonic for familial hypercholesterolemia. However, the differential diagnosis must also include rarer forms of genetic dyslipidemias such as cerebrotendinous xanthomatosis (CTX). In this report, we present the diagnostic odyssey of a French-Canadian patient presenting with Achilles tendon xanthomas and an unusual mild to moderate hypercholesterolemia. Comprehensive biochemical and genetic investigations confirmed the diagnosis of CTX, 20 years after the onset of her first symptoms. We also describe a new variant in the CYP27A1 gene associated with this atypical case and expand the clinical phenotype of this rare genetic condition. CTX is thought to be underdiagnosed, and early diagnosis and treatment of this disease is essential as it has been shown to greatly improve the patient's symptoms and prognosis.

3.
J Inherit Metab Dis ; 42(1): 107-116, 2019 01.
Article in English | MEDLINE | ID: mdl-30740739

ABSTRACT

BACKGROUND: The clinical significance of combined malonic and methylmalonic aciduria due to ACSF3 deficiency (CMAMMA) is controversial. In most publications, affected patients were identified during the investigation of various complaints. METHODS: Using a cross-sectional multicenter retrospective natural history study, we describe the course of all known CMAMMA individuals in the province of Quebec. RESULTS: We identified 25 CMAMMA patients (6 months to 30 years old) with a favorable outcome regardless of treatment. All but one came to clinical attention through the Provincial Neonatal Urine Screening Program (screening on day 21 of life). Median methylmalonic acid (MMA) levels ranged from 107 to 857 mmol/mol creatinine in urine (<10) and from 8 to 42 µmol/L in plasma (<0.4); median urine malonic acid (MA) levels ranged from 9 to 280 mmol/mol creatinine (<5). MMA was consistently higher than MA. These findings are comparable to those previously reported in CMAMMA. Causal ACSF3 mutations were identified in all patients for whom genotyping was performed (76% of cases). The most common ACSF3 mutations in our cohort were c.1075G > A (p.E359K) and c.1672C > T (p.R558W), representing 38.2 and 20.6% of alleles in genotyped families, respectively; we also report several novel mutations. CONCLUSION: Because our province still performs urine newborn screening, our patient cohort is the only one free of selection bias. Therefore, the favorable clinical course observed suggests that CMAMMA is probably a benign condition, although we cannot exclude the possibility that a small minority of patients may present symptoms attributable to CMAMMA, perhaps as a result of interactions with other genetic or environmental factors.


Subject(s)
Coenzyme A Ligases/genetics , Metabolism, Inborn Errors/genetics , Mutation/genetics , Adolescent , Adult , Alleles , Child , Child, Preschool , Cohort Studies , Creatinine/metabolism , Cross-Sectional Studies , Female , Humans , Infant , Infant, Newborn , Male , Malonates/metabolism , Methylmalonic Acid/metabolism , Neonatal Screening/methods , Retrospective Studies , Young Adult
4.
Int J Mol Sci ; 19(4)2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29597274

ABSTRACT

Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase deficiency (mitochondrial HMG-CoA synthase deficiency or mHS deficiency, OMIM #605911) is an inborn error of metabolism that affects ketone body synthesis. Acute episodes include vomiting, lethargy, hepatomegaly, hypoglycemia and dicarboxylic aciduria. The diagnosis is difficult due to the relatively unspecific clinical and biochemical presentation, and fewer than 30 patients have been described. This work describes three new patients with mHS deficiency and two missense mutations c.334C>T (p.R112W) and c.430G>T (p.V144L) previously not reported. We developed a new method to express and measure the activity of the enzyme and in this work the study is extended to ten new missense variants including those of our patients. Enzymatic assays showed that three of the mutant proteins retained some but seven completely lacked activity. The identification of a patient homozygous for a mutation that retains 70% of enzyme activity opens the door to a new interpretation of the disease by demonstrating that a modest impairment of enzyme function can actually produce symptoms. This is also the first study employing molecular dynamics modelling of the enzyme mutations. We show that the correct maintenance of the dimerization surface is crucial for retaining the structure of the active center and therefore the activity of the enzyme.


Subject(s)
Hydroxymethylglutaryl-CoA Synthase/deficiency , Metabolism, Inborn Errors , Mitochondrial Proteins/deficiency , Mutation, Missense , Protein Multimerization , Amino Acid Substitution , Child, Preschool , Female , Humans , Infant , Male , Metabolism, Inborn Errors/enzymology , Metabolism, Inborn Errors/genetics , Metabolism, Inborn Errors/pathology
5.
Can J Cardiol ; 31(11): 1360-76, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26518446

ABSTRACT

Mitochondrial cardiomyopathies are clinically and genetically heterogeneous. An integrative approach encompassing clinical, biochemical, and molecular investigations is required to reach a specific diagnosis. In this review we summarize the clinical and genetic aspects of mitochondrial disorders associated with cardiomyopathy, including disorders of oxidative phosphorylation. It also describes groups of disorders that, although not usually classified as mitochondrial disorders, stem from defects in mitochondrial function (eg, disorders of ß-oxidation and the carnitine cycle), are associated with secondary mitochondrial impairment (eg, organic acidurias), and are important diagnostically because they are treatable. Current biochemical and molecular techniques for the diagnosis of mitochondrial cardiomyopathies are described, and a diagnostic algorithm is proposed, to help clinicians in their approach to cardiomyopathies in the context of mitochondrial diseases.


Subject(s)
Biomarkers/metabolism , Cardiomyopathies , Mitochondria, Heart/metabolism , Mitochondrial Diseases , Cardiomyopathies/etiology , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Humans , Mitochondrial Diseases/complications , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism
6.
JIMD Rep ; 22: 67-75, 2015.
Article in English | MEDLINE | ID: mdl-25762494

ABSTRACT

UNLABELLED: Deficiency of pyridox(am)ine 5'-phosphate oxidase (PNPO, OMIM 610090) is a treatable autosomal recessive inborn error of metabolism. Neonatal epileptic encephalopathy and a low cerebrospinal fluid (CSF) pyridoxal 5'-phosphate level are the reported hallmarks of PNPO deficiency, but its clinical and biochemical spectra are not fully known. CASE PRESENTATION: A girl born at 33 3/7 weeks of gestation developed seizures in the first hours of life. Her seizures initially responded to GABAergic agonists, but she subsequently developed a severe epileptic encephalopathy. Brain MRI and infectious and metabolic evaluations at birth, including urinary alpha-aminoadipic semialdehyde (AASA), were normal. Lumbar puncture at age 3 months showed: pyridoxal 5'-phosphate, 52 nmol/L (normal, 23-64); homovanillic acid, 392 nmol/L (normal, 450-1,132); 5-hydroxyindoleacetic acid, 341 nmol/L (normal, 179-711); and 3-ortho-methyldopa, 30 nmol/L (normal, below 300). The patient was not being treated with pyridoxine nor with pyridoxal 5'-phosphate at the time of the lumbar puncture. She died at age 14 months. A sequencing panel targeting 53 epilepsy-related genes revealed a homozygous missense mutation in PNPO (c.674G>A, p.R225H). Homozygosity was confirmed by parental testing. Expression studies of mutant p.R225H PNPO revealed greatly reduced activity. In conclusion, a normal CSF level of pyridoxal 5'-phosphate does not rule out PNPO deficiency.

7.
Mol Genet Metab ; 111(1): 16-25, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24268530

ABSTRACT

We collected data on 48 patients from 38 families with guanidinoacetate methyltransferase (GAMT) deficiency. Global developmental delay/intellectual disability (DD/ID) with speech/language delay and behavioral problems as the most affected domains was present in 44 participants, with additional epilepsy present in 35 and movement disorder in 13. Treatment regimens included various combinations/dosages of creatine-monohydrate, l-ornithine, sodium benzoate and protein/arginine restricted diets. The median age at treatment initiation was 25.5 and 39 months in patients with mild and moderate DD/ID, respectively, and 11 years in patients with severe DD/ID. Increase of cerebral creatine and decrease of plasma/CSF guanidinoacetate levels were achieved by supplementation with creatine-monohydrate combined with high dosages of l-ornithine and/or an arginine-restricted diet (250 mg/kg/d l-arginine). Therapy was associated with improvement or stabilization of symptoms in all of the symptomatic cases. The 4 patients treated younger than 9 months had normal or almost normal developmental outcomes. One with inconsistent compliance had a borderline IQ at age 8.6 years. An observational GAMT database will be essential to identify the best treatment to reduce plasma guanidinoacetate levels and improve long-term outcomes.


Subject(s)
Arginine/metabolism , Arginine/therapeutic use , Creatine/metabolism , Creatine/therapeutic use , Glycine/analogs & derivatives , Guanidinoacetate N-Methyltransferase/deficiency , Intellectual Disability/therapy , Language Development Disorders/therapy , Movement Disorders/congenital , Ornithine/therapeutic use , Sodium Benzoate/therapeutic use , Adolescent , Adult , Brain/metabolism , Child , Child, Preschool , Combined Modality Therapy , Female , Glycine/blood , Glycine/cerebrospinal fluid , Guanidinoacetate N-Methyltransferase/metabolism , Humans , Infant , Infant, Newborn , Intellectual Disability/metabolism , Language Development Disorders/diagnosis , Language Development Disorders/metabolism , Male , Middle Aged , Movement Disorders/diagnosis , Movement Disorders/metabolism , Movement Disorders/therapy , Practice Guidelines as Topic , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...