Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 104(4-1): 044803, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34781563

ABSTRACT

The electrostatic screening of charge in one-dimensional confinement leads to long-range breakdown in electroneutrality within a nanopore. Through a series of continuum simulations, we demonstrate the principles of electroneutrality breakdown for electrolytes in one-dimensional confinement. We show how interacting pores in a membrane can counteract the phenomenon of electroneutrality breakdown, eventually returning to electroneutrality. Emphasis is placed on applying simplifying formulas to reduce the multidimensional partial differential equations into a single ordinary differential equation for the electrostatic potential. Dielectric mismatch between the electrolyte and membrane, pore aspect ratio, and confinement dimensionality are studied independently, outlining the relevance of electroneutrality breakdown in nanoporous membranes for selective ion transport and separations.

2.
J Colloid Interface Sci ; 579: 162-176, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32590157

ABSTRACT

Ion transport in extremely narrow nanochannels has gained increasing interest in recent years due to unique physical properties at the nanoscale and the technological advances that allow us to study them. It is tempting to approach this confined regime with the theoretical tools and knowledge developed for membranes and microfluidic devices, and naively apply continuum models, such as the Poisson-Nernst-Planck and Navier-Stokes equations. However, it turns out that some of the most basic principles we take for granted in larger systems, such as the complete screening of surface charge by counter-ions, can break down under extreme confinement. We show that in a truly one-dimensional system of ions interacting with three-dimensional electrostatic interactions, the screening length is exponentially large, and can easily exceed the macroscopic length of a nanotube. Without screening, electroneutrality breaks down within the nanotube, with fundamental consequences for ion transport and electrokinetic phenomena. In this work, we build a general theoretical framework for electroneutrality breakdown in nanopores, focusing on the most interesting case of a one-dimensional nanotube, and show how it provides an elegant interpretation for the peculiar scaling observed in experimental measurements of ionic conductance in carbon nanotubes.

3.
Water Res ; 161: 222-231, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31200219

ABSTRACT

Hyporheic zones are increasingly thought of as natural bioreactors, capable of transforming and attenuating groundwater pollutants present in diffuse baseflow. An underappreciated scenario in the understanding of contaminant fate in hyporheic zones is the interaction between point-source trichloroethene (TCE) plumes and ubiquitous, non-point source pollutants such as nitrate. This study aims to conceptualise critical biogeochemical gradients in the hyporheic zone which govern the export potential of these redox-sensitive pollutants from carbon-poor, oxic aquifers. Within the TCE plume discharge zone, discrete vertical profiling of the upper 100 cm of sediment pore water chemistry revealed an 80% increase in dissolved organic carbon (DOC) concentrations and 20-60 cm thick hypoxic zones (<2 mg O2 L-1) within which most reactive transport was observed. A 33% reduction of nitrate concentrations coincided with elevated pore water nitrous oxide concentrations as well as the appearance of manganese and the TCE metabolite cis-1,2-dichloroethene (cDCE). Elevated groundwater nitrate concentrations (>50 mg L-1) create a large stoichiometric demand for bioavailable DOC in discharging groundwater. With the benefit of a high-resolution grid of pore water samplers investigating the shallowest 30 cm of hypoxic groundwater flow paths, we identified DOC-rich hotspots associated with submerged vegetation (Ranunculus spp.), where low-energy metabolic processes such as mineral dissolution/reduction, methanogenesis and ammonification dominate. Using a chlorine index metric, we show that enhanced TCE to cDCE transformation takes place within these biogeochemical hotspots, highlighting their relevance for natural plume attenuation.


Subject(s)
Groundwater , Trichloroethylene , Water Pollutants, Chemical , Ethylenes , Nitrates
5.
J Chem Phys ; 149(5): 054504, 2018 Aug 07.
Article in English | MEDLINE | ID: mdl-30089391

ABSTRACT

The dielectric constant of ionic solutions is known to reduce with increasing ionic concentrations. However, the origin of this effect has not been thoroughly explored. In this paper, we study two such possible sources: long-range Coulombic correlations and solvent excluded-volume. Correlations originate from fluctuations of the electrostatic potential beyond the mean-field Poisson-Boltzmann theory, evaluated by employing a field-theoretical loop expansion of the free energy. The solvent excluded-volume, on the other hand, stems from the finite ion size, accounted for via a lattice-gas model. We show that both correlations and excluded volume are required in order to capture the important features of the dielectric behavior. For highly polar solvents, such as water, the dielectric constant is given by the product of the solvent volume fraction and a concentration-dependent susceptibility per volume fraction. The available solvent volume decreases as a function of ionic strength due the increasing volume fraction of ions. A similar decrease occurs for the susceptibility due to the correlations between the ions and solvent, reducing the dielectric response even further. Our predictions for the dielectric constant fit well with experiments for a wide range of concentrations for different salts in different temperatures, using a single fit parameter related to the ion size.

6.
J Contam Hydrol ; 158: 38-54, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24424265

ABSTRACT

Integrated approaches for the identification of pollutant linkages between aquifers and streams are of crucial importance for evaluating the environmental risks posed by industrial contaminants like trichloroethene (TCE). This study presents a systematic, multi-scale approach to characterising groundwater TCE discharge to a 'gaining' UK lowland stream receiving baseflow from a major Permo-Triassic sandstone aquifer. Beginning with a limited number of initial monitoring points, we aim to provide a 'first pass' mechanistic understanding of the plume's fate at the aquifer/stream interface using a novel combination of streambed diffusion samplers, riparian monitoring wells and drive-point mini-piezometers in a spatially nested sampling configuration. Our results indicate the potential discharge zone of the plume to extend along a stream reach of 120 m in length, delineated by a network of 60 in-situ diffusion samplers. Within this section, a 40 m long sub-reach of higher concentration (>10 µg L(-1)) was identified; centred on a meander bend in the floodplain. 25 multi-level mini-piezometers installed to target this down-scaled reach revealed even higher TCE concentrations (20-40 µg L(-1)), significantly above alluvial groundwater samples (<6 µg L(-1)) from 15 riparian monitoring wells. Significant lateral and vertical spatial heterogeneity in TCE concentrations within the top 1m of the streambed was observed with the decimetre-scale vertical resolution provided by multi-level mini-piezometers. It appears that the distribution of fine-grained material in the Holocene deposits of the riparian floodplain and below the channel is exerting significant local-scale geological controls on the location and magnitude of the TCE discharge. Large-scale in-situ biodegradation of the plume was not evident during the monitoring campaigns. However, detections of cis-1,2-dichloroethene and vinyl chloride in discrete sections of the sediment profile indicate that shallow (e.g., <20 cm) TCE transformation may be significant at a local scale in the streambed deposits. Our findings highlight the need for efficient multi-scale monitoring strategies in geologically heterogeneous lowland stream/aquifer systems in order to more adequately quantify the risk to surface water ecological receptors posed by point-source groundwater contaminants like TCE.


Subject(s)
Environmental Monitoring/methods , Groundwater/chemistry , Trichloroethylene/analysis , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry , Rivers/chemistry , United Kingdom
7.
J Chem Phys ; 139(16): 164909, 2013 Oct 28.
Article in English | MEDLINE | ID: mdl-24182081

ABSTRACT

We study the variation of the dielectric response of ionic aqueous solutions as function of their ionic strength. The effect of salt on the dielectric constant appears through the coupling between ions and dipolar water molecules. On a mean-field level, we account for any internal charge distribution of particles. The dipolar degrees of freedom are added to the ionic ones and result in a generalization of the Poisson-Boltzmann (PB) equation called the Dipolar PB (DPB). By looking at the DPB equation around a fixed point-like ion, a closed-form formula for the dielectric constant is obtained. We express the dielectric constant using the "hydration length" that characterizes the hydration shell of dipoles around ions, and thus the strength of the dielectric decrement. The DPB equation is then examined for three additional cases: mixture of solvents, polarizable medium, and ions of finite size. Employing field-theoretical methods, we expand the Gibbs free-energy to first order in a loop expansion and calculate self-consistently the dielectric constant. For pure water, the dipolar fluctuations represent an important correction to the mean-field value and good agreement with the water dielectric constant is obtained. For ionic solutions we predict analytically the dielectric decrement that depends on the ionic strength in a nonlinear way. Our prediction fits rather well a large range of concentrations for different salts using only one fit parameter related to the size of ions and dipoles. A linear dependence of the dielectric constant on the salt concentration is observed at low salinity, and a noticeable deviation from linearity can be seen for ionic strength above 1 M, in agreement with experiments.


Subject(s)
Models, Theoretical , Static Electricity , Poisson Distribution
8.
Phys Rev Lett ; 108(22): 227801, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-23003654

ABSTRACT

We study the variation of the dielectric response of a dielectric liquid (e.g. water) when a salt is added to the solution. Employing field-theoretical methods, we expand the Gibbs free energy to first order in a loop expansion and calculate self-consistently the dielectric constant. We predict analytically the dielectric decrement which depends on the ionic strength in a complex way. Furthermore, a qualitative description of the hydration shell is found and is characterized by a single length scale. Our prediction fits rather well a large range of concentrations for different salts using only one fit parameter related to the size of ions and dipoles.

9.
Mult Scler Int ; 2011: 561262, 2011.
Article in English | MEDLINE | ID: mdl-22096639

ABSTRACT

Background. There is an insufficient remyelination in the lesions of multiple sclerosis (MS). One of the factor that was found to promote remyelination is neuregulin-1 which is the ligand of ErbB4. Immune cells have been implicated in neurogenesis and oligodendrogenesis. Aims. We studied the expression of ErbB4 in the immune cells of patients with relapsing remitting (RR) multiple sclerosis (MS) and healthy controls. Methods. ErB4 expression in immune cells was studied by flow cytometry without stimulation or with stimulation with anti-CD3 and anti-CD28 monoclonal antibodies or in the presence of interferon-g or TNF-α as well as by immunoprecipitation and Western blot, and its mRNA was studied by real-time PCR. Results. We found reduced levels of ErbB4 in the total PBMCs and in T cells, monocytes, and B cells of RR MS patients. Similarly, the ErbB4 RNA levels were reduced in the immune cells of patients with RR-MS. Stimulation via CD3 and CD28 significantly upregulated the expression of ErbB4 on immune cells healthy individuals. This effect was weaker in the patients group. Conclusion. ErbB4 may play a role in the proliferation of oligodendrocyte progenitor cells, differentiation of oligodendrocytes, and remyelination, and, therefore, the reduced ErbB4 expression in immune cells of patients with RR-MS may contribute to insufficient remyelination that occurs in the disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...