Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Proc Natl Acad Sci U S A ; 116(41): 20760-20769, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31548371

ABSTRACT

Microscopy of Lewy bodies in Parkinson's disease (PD) suggests they are not solely filamentous deposits of α-synuclein (αS) but also contain vesicles and other membranous material. We previously reported the existence of native αS tetramers/multimers and described engineered mutations of the αS KTKEGV repeat motifs that abrogate the multimers. The resultant excess monomers accumulate in lipid membrane-rich inclusions associated with neurotoxicity exceeding that of natural familial PD mutants, such as E46K. Here, we use the αS "3K" (E35K+E46K+E61K) engineered mutation to probe the mechanisms of reported small-molecule modifiers of αS biochemistry and then identify compounds via a medium-throughput automated screen. αS 3K, which forms round, vesicle-rich inclusions in cultured neurons and causes a PD-like, l-DOPA-responsive motor phenotype in transgenic mice, was fused to YFP, and fluorescent inclusions were quantified. Live-cell microscopy revealed the highly dynamic nature of the αS inclusions: for example, their rapid clearance by certain known modulators of αS toxicity, including tacrolimus (FK506), isradipine, nilotinib, nortriptyline, and trifluoperazine. Our automated 3K cellular screen identified inhibitors of stearoyl-CoA desaturase (SCD) that robustly prevent the αS inclusions, reduce αS 3K neurotoxicity, and prevent abnormal phosphorylation and insolubility of αS E46K. SCD inhibition restores the E46K αS multimer:monomer ratio in human neurons, and it actually increases this ratio for overexpressed wild-type αS. In accord, conditioning 3K cells in saturated fatty acids rescued, whereas unsaturated fatty acids worsened, the αS phenotypes. Our cellular screen allows probing the mechanisms of synucleinopathy and refining drug candidates, including SCD inhibitors and other lipid modulators.


Subject(s)
Inclusion Bodies/drug effects , Lipids/analysis , Mutation , Neuroblastoma/drug therapy , Small Molecule Libraries/pharmacology , Stearoyl-CoA Desaturase/antagonists & inhibitors , alpha-Synuclein/chemistry , Animals , Cell Line , High-Throughput Screening Assays , Humans , Mice , Mice, Transgenic , Models, Biological , Neuroblastoma/metabolism , Neuroblastoma/pathology , Stearoyl-CoA Desaturase/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
2.
Sci Rep ; 9(1): 11682, 2019 08 12.
Article in English | MEDLINE | ID: mdl-31406131

ABSTRACT

Mutations in the E3 ubiquitin ligase parkin are the most common known cause of autosomal recessive Parkinson's disease (PD), and parkin depletion may play a role in sporadic PD. Here, we sought to elucidate the mechanisms by which stress decreases parkin protein levels using cultured neuronal cells and the PD-relevant stressor, L-DOPA. We find that L-DOPA causes parkin loss through both oxidative stress-independent and oxidative stress-dependent pathways. Characterization of the latter reveals that it requires both the kinase PINK1 and parkin's interaction with phosphorylated ubiquitin (phospho-Ub) and is mediated by proteasomal degradation. Surprisingly, autoubiquitination and mitophagy do not appear to be required for such loss. In response to stress induced by hydrogen peroxide or CCCP, parkin degradation also requires its association with phospho-Ub, indicating that this mechanism is broadly generalizable. As oxidative stress, metabolic dysfunction and phospho-Ub levels are all elevated in PD, we suggest that these changes may contribute to a loss of parkin expression.


Subject(s)
Levodopa/pharmacology , Neurons/drug effects , Protein Kinases/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin/genetics , Animals , Carbonyl Cyanide m-Chlorophenyl Hydrazone/analogs & derivatives , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , Cell Differentiation , Cell Line, Tumor , Embryo, Mammalian , Gene Expression Regulation , Humans , Hydrogen Peroxide/pharmacology , Models, Biological , Neurons/metabolism , Neurons/pathology , PC12 Cells , Parkinsonian Disorders/genetics , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/pathology , Phosphorylation/drug effects , Primary Cell Culture , Proteasome Endopeptidase Complex/drug effects , Proteasome Endopeptidase Complex/metabolism , Protein Kinases/metabolism , Proteolysis , Rats , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism
3.
Mov Disord ; 34(4): 526-535, 2019 04.
Article in English | MEDLINE | ID: mdl-30788890

ABSTRACT

BACKGROUND: SMPD1 (acid-sphingomyelinase) variants have been associated with Parkinson's disease in recent studies. The objective of this study was to further investigate the role of SMPD1 mutations in PD. METHODS: SMPD1 was sequenced in 3 cohorts (Israel Ashkenazi Jewish cohort, Montreal/Montpellier, and New York), including 1592 PD patients and 975 controls. Additional data were available for 10,709 Ashkenazi Jewish controls. Acid-sphingomyelinase activity was measured by a mass spectrometry-based assay in the New York cohort. α-Synuclein levels were measured in vitro following CRISPR/Cas9-mediated knockout and siRNA knockdown of SMPD1 in HeLa and BE(2)-M17 cells. Lysosomal localization of acid-sphingomyelinase with different mutations was studied, and in silico analysis of their effect on acid-sphingomyelinase structure was performed. RESULTS: SMPD1 mutations were associated with PD in the Ashkenazi Jewish cohort, as 1.4% of PD patients carried the p.L302P or p.fsP330 mutation, compared with 0.37% in 10,709 Ashkenazi Jewish controls (OR, 3.7; 95%CI, 1.6-8.2; P = 0.0025). In the Montreal/Montpellier cohort, the p.A487V variant was nominally associated with PD (1.5% versus 0.14%; P = 0.0065, not significant after correction for multiple comparisons). Among PD patients, reduced acid-sphingomyelinase activity was associated with a 3.5- to 5.8-year earlier onset of PD in the lowest quartile versus the highest quartile of acid-sphingomyelinase activity (P = 0.01-0.001). We further demonstrated that SMPD1 knockout and knockdown resulted in increased α-synuclein levels in HeLa and BE(2)-M17 dopaminergic cells and that the p.L302P and p.fsP330 mutations impair the traffic of acid-sphingomyelinase to the lysosome. CONCLUSIONS: Our results support an association between SMPD1 variants, acid-sphingomyelinase activity, and PD. Furthermore, they suggest that reduced acid-sphingomyelinase activity may lead to α-synuclein accumulation. © 2019 International Parkinson and Movement Disorder Society.


Subject(s)
Brain/metabolism , Genetic Predisposition to Disease , Parkinson Disease/genetics , Sphingomyelin Phosphodiesterase/genetics , alpha-Synuclein/metabolism , Aged , Brain/pathology , Female , Gene Knockdown Techniques , HeLa Cells , Humans , Jews/genetics , Male , Middle Aged , Mutation , Parkinson Disease/metabolism , Parkinson Disease/pathology
4.
Eur J Med Genet ; 62(1): 65-69, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29842932

ABSTRACT

BACKGROUND: Variants in GBA are the most common genetic risk factor for Parkinson's disease (PD), and are especially prevalent in the Ashkenazi Jewish (AJ) population. However, most studies on GBA in AJ genotype only seven selected Gaucher-associated pathogenic variants rather than sequencing the whole gene, which may leave carriers of PD-associated GBA variants undiscovered. METHODS: GBA was fully sequenced using molecular inversion probes (MIPs) and Sanger sequencing in 735 AJ PD patients and 662 AJ controls, from Israel and New York. Additional AJ control data (n = 3044) from the Inflammatory Bowel Disease Exome Portal was used. RESULTS: Full GBA sequencing increased the number of variants discovered by 17.4%, compared to targeted genotyping. An additional 17 PD patients were identified with GBA-associated PD. The p.E326K variant was found in 1.6% of AJ PD patients, making it the second most common PD-associated GBA variant in AJ. GBA variants were found in 18% of PD patients and 7.5% of controls (OR = 2.7, 95%CI = 1.9-3.8, p < 0.0001). CONCLUSION: Without full sequencing of GBA, or at minimum including p.E326K in the genotyping panel, a significant proportion of variant carriers go undiscovered and may be incorrectly assigned as non-carriers in studies or clinical trials.


Subject(s)
Genetic Carrier Screening/standards , Glucosylceramidase/genetics , Jews/genetics , Parkinson Disease/genetics , Polymorphism, Single Nucleotide , Adult , Aged , Female , Genetic Carrier Screening/methods , Genome-Wide Association Study/standards , Heterozygote , Humans , Male , Middle Aged , Sequence Analysis, DNA/standards
5.
Stroke ; 49(8): 1977-1980, 2018 08.
Article in English | MEDLINE | ID: mdl-29986930

ABSTRACT

Background and Purpose- Absent or diminished α-galactosidase A (GLA) and acid α-glucosidase (GAA) enzyme activity are core features of Fabry and Pompe disease, respectively. Patients with Fabry or Pompe disease may have dilated intracranial arteries but whether lower GLA or GAA enzyme activity relates to brain arterial dilatation in other populations is unknown. Methods- Participants included Parkinson disease patients and nonblood-related controls, whose GLA and GAA enzymatic activities were measured in dried blood spots. Independent readers measured the axial arterial diameter of the ascending portion of the cavernous internal carotid arteries and the most proximal segment of the basilar artery in T2 black voids. Linear regression models were built to investigate the relationship between brain arterial diameters and lysosomal enzymatic activities. Results- The cohort included 107 participants (mean age, 66.5±10.3; 67% men). In an adjusted linear regression model, lower GLA activity was associated with larger brain arterial diameters (B=0.50±0.23, P=0.03). The strength of association was the greatest for the basilar artery diameter (B=0.80±0.33, P=0.02). Similarly, lower GAA activity was associated with an increased basilar arterial diameter (B=0.73±0.35, P=0.04). Conclusions- Lower GLA and GAA enzymatic activities were associated with larger brain arterial diameters, particularly the basilar artery diameter. Lower lysosomal enzymatic function in patients without Fabry or Pompe disease may play a role in brain arterial dilatation.


Subject(s)
Cerebral Arteries/diagnostic imaging , Cerebral Arteries/enzymology , Glucan 1,4-alpha-Glucosidase/metabolism , Lysosomes/enzymology , alpha-Galactosidase/metabolism , Aged , Brain/blood supply , Brain/diagnostic imaging , Brain/enzymology , Cohort Studies , Dilatation, Pathologic/enzymology , Enzyme Activation/physiology , Female , Humans , Male , Middle Aged , Parkinsonian Disorders/diagnostic imaging , Parkinsonian Disorders/enzymology
6.
Exp Neurol ; 303: 95-107, 2018 05.
Article in English | MEDLINE | ID: mdl-29432724

ABSTRACT

Reduced function of parkin appears to be a central pathogenic event in Parkinson disease (PD). Increasing parkin levels enhances survival in models of PD-related neuronal death and is a promising therapeutic objective. Previously, we demonstrated that the transcription factor ATF4 promotes survival in response to PD-mimetic stressors by maintaining parkin levels. ATF4 translation is up-regulated by phosphorylation of the translation initiation factor eIF2α. The small molecule guanabenz enhances eIF2α phosphorylation by blocking the function of GADD34, a regulatory protein that promotes eIF2α dephosphorylation. We tested the hypothesis that guanabenz, by inhibiting GADD34 and consequently increasing eIF2α phosphorylation and elevating ATF4, would improve survival in models of PD by up-regulating parkin. We found that GADD34 is strongly induced by 6-OHDA, and that GADD34 localization is dramatically altered in dopaminergic substantia nigra neurons in PD cases. We further demonstrated that guanabenz attenuates 6-hydroxydopamine (6-OHDA) induced cell death of differentiated PC12 cells and primary ventral midbrain dopaminergic neurons in culture, and of dopaminergic neurons in the substantia nigra of mice. In culture models, guanabenz also increases eIF2α phosphorylation and ATF4 and parkin levels in response to 6-OHDA. Furthermore, if either ATF4 or parkin is silenced, then the protective effect of guanabenz is lost. We also found similar results in a distinct model of neuronal death: primary cultures of cortical neurons treated with the topoisomerase I inhibitor camptothecin, in which guanabenz limited camptothecin-induced neuronal death in an ATF4- and parkin-dependent manner. In summary, our data suggest that guanabenz and other GADD34 inhibitors could be used as therapeutic agents to boost parkin levels and thereby slow neurodegeneration in PD and other neurodegenerative conditions.


Subject(s)
Activating Transcription Factor 4/metabolism , Adrenergic alpha-2 Receptor Agonists/pharmacology , Guanabenz/pharmacology , Mesencephalon/metabolism , Parkinson Disease/pathology , Ubiquitin-Protein Ligases/metabolism , Adrenergic Agents/pharmacology , Animals , Apoptosis/drug effects , Cell Death/drug effects , DNA Damage/drug effects , Disease Models, Animal , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Humans , Mice , Mice, Inbred C57BL , Oxidopamine/pharmacology , PC12 Cells , Phosphorylation/drug effects , Protein Phosphatase 1/genetics , Protein Phosphatase 1/metabolism , Rats , Up-Regulation/drug effects
8.
Hum Mol Genet ; 26(18): 3466-3481, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28911198

ABSTRACT

α-Synuclein (αS) forms round cytoplasmic inclusions in Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Evidence suggests a physiological function of αS in vesicle trafficking and release. In contrast to earlier tenets, recent work indicates that αS normally exists in cells in a dynamic equilibrium between monomers and tetramers/multimers. We engineered αS mutants incapable of multimerization, leading to excess monomers at vesicle membranes. By EM, such mutants induced prominent vesicle clustering, leading to round cytoplasmic inclusions. Immunogold labeling revealed abundant αS intimately associated with vesicles of varied size. Fluorescence microscopy with marker proteins showed that the αS-associated vesicles were of diverse endocytic and secretory origin. An αS '3K' mutant (E35K + E46K + E61K) that amplifies the PD/DLB-causing E46K mutation induced αS-rich vesicle clusters resembling the vesicle-rich areas of Lewy bodies, supporting pathogenic relevance. Mechanistically, E46K can increase αS vesicle binding via membrane-induced amphipathic helix formation, and '3K' further enhances this effect. Another engineered αS variant added hydrophobicity to the hydrophobic half of αS helices, thereby stabilizing αS-membrane interactions. Importantly, substituting charged for uncharged residues within the hydrophobic half of the stabilized helix not only reversed the strong membrane interaction of the multimer-abolishing αS variant but also restored multimerization and prevented the aberrant vesicle interactions. Thus, reversible αS amphipathic helix formation and dynamic multimerization regulate a normal function of αS at vesicles, and abrogating multimers has pathogenic consequences.


Subject(s)
Inclusion Bodies/metabolism , Mutation , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Amino Acid Sequence , Animals , Cells, Cultured , Conserved Sequence , Humans , Inclusion Bodies/genetics , Lewy Bodies/genetics , Lewy Bodies/metabolism , Lewy Body Disease/genetics , Lewy Body Disease/metabolism , Lewy Body Disease/pathology , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence/methods , Neurons/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Protein Structure, Secondary
9.
PLoS One ; 12(2): e0172348, 2017.
Article in English | MEDLINE | ID: mdl-28212433

ABSTRACT

Parkinson's disease (PD) is a common neurodegenerative disease whose pathological hallmark is the accumulation of intracellular α-synuclein aggregates in Lewy bodies. Lipid metabolism dysregulation may play a significant role in PD pathogenesis; however, large plasma lipidomic studies in PD are lacking. In the current study, we analyzed the lipidomic profile of plasma obtained from 150 idiopathic PD patients and 100 controls, taken from the 'Spot' study at Columbia University Medical Center in New York. Our mass spectrometry based analytical panel consisted of 520 lipid species from 39 lipid subclasses including all major classes of glycerophospholipids, sphingolipids, glycerolipids and sterols. Each lipid species was analyzed using a logistic regression model. The plasma concentrations of two lipid subclasses, triglycerides and monosialodihexosylganglioside (GM3), were different between PD and control participants. GM3 ganglioside concentration had the most significant difference between PD and controls (1.531±0.037 pmol/µl versus 1.337±0.040 pmol/µl respectively; p-value = 5.96E-04; q-value = 0.048; when normalized to total lipid: p-value = 2.890E-05; q-value = 2.933E-03). Next, we used a collection of 20 GM3 and glucosylceramide (GlcCer) species concentrations normalized to total lipid to perform a ROC curve analysis, and found that these lipids compare favorably with biomarkers reported in previous studies (AUC = 0.742 for males, AUC = 0.644 for females). Our results suggest that higher plasma GM3 levels are associated with PD. GM3 lies in the same glycosphingolipid metabolic pathway as GlcCer, a substrate of the enzyme glucocerebrosidase, which has been associated with PD. These findings are consistent with previous reports implicating lower glucocerebrosidase activity with PD risk.


Subject(s)
G(M3) Ganglioside/blood , Parkinson Disease/blood , Aged , Aged, 80 and over , Biomarkers/blood , Case-Control Studies , Female , Humans , Male , Middle Aged , Parkinson Disease/physiopathology , Sex Characteristics
10.
J Neural Transm (Vienna) ; 123(6): 583-8, 2016 06.
Article in English | MEDLINE | ID: mdl-27098667

ABSTRACT

The H1 haplotype of the microtubule-associated protein tau gene (MAPT) is associated with an increased risk of Parkinson disease (PD) compared with the H2 haplotype, but its effect on Lewy body (LB) formation is unclear. In this study, we compared the MAPT haplotype frequency between pathologically confirmed PD patients (n = 71) and controls (n = 52). We analyzed Braak LB stage, Braak neurofibrillary tangle (NFT) stage, and CERAD amyloid score by haplotype. We further tested the association between MAPT haplotype and semi-quantitative counts of LBs, NFTs, and neuritic plaques (NPs) in multiple neocortical regions. Consistent with previous reports, PD cases had an increased likelihood of carrying an H1/H1 genotype compared to controls (OR = 5.72, 95 % CI 1.80-18.21, p = 0.003). Braak LB, Braak NFT and CERAD scores did not differ by haplotype. However, H1/H1 carriers had higher LB counts in parietal cortex (p = 0.02) and in overall neocortical LBs (p = 0.03) compared to non-H1/H1 cases. Our analyses suggest that PD patients homozygous for the H1 haplotype have a higher burden of neocortical LB pathology.


Subject(s)
Lewy Bodies/metabolism , Neocortex/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , tau Proteins/genetics , Aged , Aged, 80 and over , Female , Haplotypes , Humans , Male , Parkinson Disease/pathology
11.
Article in English | MEDLINE | ID: mdl-27110593

ABSTRACT

Mutations in glucocerebrosidase (GBA) are a common risk factor for Parkinson's disease (PD). The scavenger receptor class B member 2 (SCARB2) gene encodes a receptor responsible for the transport of glucocerebrosidase (GCase) to the lysosome. Two common SNPs in linkage disequilibrium with SCARB2, rs6812193 and rs6825004, have been associated with PD and Lewy Body Disease in genome wide association studies. Whether these SNPs are associated with altered glucocerebrosidase enzymatic activity is unknown. Our objective was to determine whether SCARB2 SNPs are associated with PD and with reduced GCase activity. The GBA gene was fully sequenced, and the LRRK2 G2019S and SCARB2 rs6812193 and rs6825004 SNPs were genotyped in 548 PD patients and 272 controls. GCase activity in dried blood spots was measured by tandem mass spectrometry. We tested the association between SCARB2 genotypes and PD risk in regression models adjusted for gender, age, and LRRK2 G2019S and GBA mutation status. We compared GCase activity between participants with different genotypes at rs6812193 and rs6825004. Genotype at rs6812193 was associated with PD status. PD cases were less likely to carry the T allele than the C allele (OR=0.71; p=0.004), but GCase enzymatic activity was similar across rs6812193 genotypes (C/C: 11.88 µmol/l/h; C/T: 11.80 µmol/l/h; T/T: 12.02 µmol/l/h; p=0.867). Genotype at rs6825004 was not associated with either PD status or GCase activity. In conclusion, our results support an association between SCARB2 genotype at rs6812193 and PD, but suggest that the increased risk is not mediated by GCase activity.

12.
J Neurosci ; 35(30): 10731-49, 2015 Jul 29.
Article in English | MEDLINE | ID: mdl-26224857

ABSTRACT

Parkinson's disease (PD) is characterized by the progressive loss of select neuronal populations, but the prodeath genes mediating the neurodegenerative processes remain to be fully elucidated. Trib3 (tribbles pseudokinase 3) is a stress-induced gene with proapoptotic activity that was previously described as highly activated at the transcriptional level in a 6-hydroxydopamine (6-OHDA) cellular model of PD. Here, we report that Trib3 immunostaining is elevated in dopaminergic neurons of the substantia nigra pars compacta (SNpc) of human PD patients. Trib3 protein is also upregulated in cellular models of PD, including neuronal PC12 cells and rat dopaminergic ventral midbrain neurons treated with 6-OHDA, 1-methyl-4-phenylpyridinium (MPP+), or α-synuclein fibrils (αSYN). In the toxin models, Trib3 induction is substantially mediated by the transcription factors CHOP and ATF4. Trib3 overexpression is sufficient to promote neuronal death; conversely, Trib3 knockdown protects neuronal PC12 cells as well as ventral midbrain dopaminergic neurons from 6-OHDA, MPP+, or αSYN. Mechanism studies revealed that Trib3 physically interacts with Parkin, a prosurvival protein whose loss of function is associated with PD. Elevated Trib3 reduces Parkin expression in cultured cells; and in the SNpc of PD patients, Parkin levels are reduced in a subset of dopaminergic neurons expressing high levels of Trib3. Loss of Parkin at least partially mediates the prodeath actions of Trib3 in that Parkin knockdown in cellular PD models abolishes the protective effect of Trib3 downregulation. Together, these findings identify Trib3 and its regulatory pathways as potential targets to suppress the progression of neuron death and degeneration in PD. SIGNIFICANCE STATEMENT: Parkinson's disease (PD) is the most common neurodegenerative movement disorder. Current treatments ameliorate symptoms, but not the underlying neuronal death. Understanding the core neurodegenerative processes in PD is a prerequisite for identifying new therapeutic targets and, ultimately, curing this disease. Here, we describe a novel pathway involving the proapoptotic protein Trib3 in neuronal death associated with PD. These findings are supported by data from multiple cellular models of PD and by immunostaining of postmortem PD brains. Upstream, Trib3 is induced by the transcription factors ATF4 and CHOP; and downstream, Trib3 interferes with the PD-associated prosurvival protein Parkin to mediate death. These findings establish this new pathway as a potential and promising therapeutic target for treatment of PD.


Subject(s)
Cell Cycle Proteins/biosynthesis , Dopaminergic Neurons/metabolism , Nerve Degeneration/metabolism , Parkinson Disease/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Repressor Proteins/biosynthesis , Substantia Nigra/metabolism , Aged , Aged, 80 and over , Animals , Blotting, Western , Cell Death/physiology , Female , Fluorescent Antibody Technique , Humans , Immunoprecipitation , Male , Mice , PC12 Cells , Protein Serine-Threonine Kinases/biosynthesis , Rats , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Transfection , Ubiquitin-Protein Ligases/metabolism
13.
Brain ; 138(Pt 9): 2648-58, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26117366

ABSTRACT

Glucocerebrosidase (GBA) mutations have been associated with Parkinson's disease in numerous studies. However, it is unknown whether the increased risk of Parkinson's disease in GBA carriers is due to a loss of glucocerebrosidase enzymatic activity. We measured glucocerebrosidase enzymatic activity in dried blood spots in patients with Parkinson's disease (n = 517) and controls (n = 252) with and without GBA mutations. Participants were recruited from Columbia University, New York, and fully sequenced for GBA mutations and genotyped for the LRRK2 G2019S mutation, the most common autosomal dominant mutation in the Ashkenazi Jewish population. Glucocerebrosidase enzymatic activity in dried blood spots was measured by a mass spectrometry-based assay and compared among participants categorized by GBA mutation status and Parkinson's disease diagnosis. Parkinson's disease patients were more likely than controls to carry the LRRK2 G2019S mutation (n = 39, 7.5% versus n = 2, 0.8%, P < 0.001) and GBA mutations or variants (seven homozygotes and compound heterozygotes and 81 heterozygotes, 17.0% versus 17 heterozygotes, 6.7%, P < 0.001). GBA homozygotes/compound heterozygotes had lower enzymatic activity than GBA heterozygotes (0.85 µmol/l/h versus 7.88 µmol/l/h, P < 0.001), and GBA heterozygotes had lower enzymatic activity than GBA and LRRK2 non-carriers (7.88 µmol/l/h versus 11.93 µmol/l/h, P < 0.001). Glucocerebrosidase activity was reduced in heterozygotes compared to non-carriers when each mutation was compared independently (N370S, P < 0.001; L444P, P < 0.001; 84GG, P = 0.003; R496H, P = 0.018) and also reduced in GBA variants associated with Parkinson's risk but not with Gaucher disease (E326K, P = 0.009; T369M, P < 0.001). When all patients with Parkinson's disease were considered, they had lower mean glucocerebrosidase enzymatic activity than controls (11.14 µmol/l/h versus 11.85 µmol/l/h, P = 0.011). Difference compared to controls persisted in patients with idiopathic Parkinson's disease (after exclusion of all GBA and LRRK2 carriers; 11.53 µmol/l/h, versus 12.11 µmol/l/h, P = 0.036) and after adjustment for age and gender (P = 0.012). Interestingly, LRRK2 G2019S carriers (n = 36), most of whom had Parkinson's disease, had higher enzymatic activity than non-carriers (13.69 µmol/l/h versus 11.93 µmol/l/h, P = 0.002). In patients with idiopathic Parkinson's, higher glucocerebrosidase enzymatic activity was associated with longer disease duration (P = 0.002) in adjusted models, suggesting a milder disease course. We conclude that lower glucocerebrosidase enzymatic activity is strongly associated with GBA mutations, and modestly with idiopathic Parkinson's disease. The association of lower glucocerebrosidase activity in both GBA mutation carriers and Parkinson's patients without GBA mutations suggests that loss of glucocerebrosidase function contributes to the pathogenesis of Parkinson's disease. High glucocerebrosidase enzymatic activity in LRRK2 G2019S carriers may reflect a distinct pathogenic mechanism. Taken together, these data suggest that glucocerebrosidase enzymatic activity could be a modifiable therapeutic target.


Subject(s)
Gene Expression Regulation, Enzymologic/genetics , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Mutation/genetics , Parkinson Disease/enzymology , Parkinson Disease/genetics , Aged , Cohort Studies , Female , Genotype , Humans , Jews/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Male , Middle Aged , Protein Serine-Threonine Kinases/genetics , Severity of Illness Index
14.
J Genet Couns ; 23(1): 114-20, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23748874

ABSTRACT

The purpose of the study is to investigate Parkinson disease (PD) patients' and caregivers' knowledge of and interest in genetic testing. Gaucher disease (GD) results from recessive mutations in glucocerebrosidase (GBA). Both heterozygote GBA carriers and GD patients are at greater risk for PD. Studies regarding knowledge of and interest in genetic testing have been limited and have not offered genetic results to participants. In this study, 353 PD patients and 180 caregivers were recruited to a PD genetic study. The association between GD, GBA mutations and PD was described to participants who reported their familiarity with genetic terms, answered questions on genetic concepts, and indicated their interest in knowing if they may have GD (two GBA mutations) and other genetic information that could impact their health. Ninety-three-percent of participants were interested in receiving GBA results; however, only 51.6 % of PD participants and 55.6 % of caregivers knew that "scientists have identified genes associated with a higher risk of developing PD." PD patients may benefit from education and genetic counseling on the implications of genetic testing.


Subject(s)
Caregivers , Parkinson Disease/genetics , Glucosylceramidase/genetics , Humans , Mutation , Parkinson Disease/enzymology , Parkinson Disease/nursing
15.
Article in English | MEDLINE | ID: mdl-23724360

ABSTRACT

BACKGROUND: Essential tremor is characterized by several hyperkinetic movements, including arm and head tremors. We report another movement of the head in patients with essential tremor, which we term the "head snap." This was observed as a jerking motion of the head in some patients while they performed the finger-nose-finger maneuver. METHODS: We compared the prevalence of the head snap in essential tremor patients vs. Parkinson's disease patients. We also assessed the clinical correlates of the head snap. RESULTS: Ten (20%) of 50 essential tremor patients exhibited a head snap of any severity (rating ≥0.5) vs. 0 of 50 Parkinson's disease patients (p = 0.001). Patients with head snap had more severe arm tremor on Archimedes spiral drawings (p = 0.019) and were more likely to have head tremor (p = 0.03) than those without it. CONCLUSIONS: This sign could be a useful aid in the clinical diagnosis of tremor.

16.
Front Neurol ; 4: 51, 2013.
Article in English | MEDLINE | ID: mdl-23717300

ABSTRACT

BACKGROUND: An estimated 30-50% of essential tremor (ET) diagnoses are incorrect, and the true diagnosis in those patients is often Parkinson's disease (PD) or other tremor disorders. There are general statements about the tremor in these ET and PD, but published data on the more subtle characteristics of tremor are surprisingly limited. Postural tremor may occur in both disorders, adding to the difficulty. There are several anecdotal impressions regarding specific features of postural tremor in ET vs. PD, including joint distribution (e.g., phalanges, metacarpal-phalangeal joints, wrist), tremor directionality (e.g., flexion-extension vs. pronation-supination), and presence of intention tremor. However, there is little data to support these impressions. METHODS: In this cross-sectional study, 100 patients (ET, 50 PD) underwent detailed videotaped neurological examinations. Arm tremor was rated by a movement disorder neurologist who assessed severity and directionality across multiple joints. RESULTS: During sustained arm extension, ET patients exhibited more wrist than metacarpal-phalangeal and phalangeal joint tremor than did PD patients (p < 0.001), and more wrist flexion-extension tremor than wrist pronation-supination tremor (p < 0.001). During the finger-nose-finger maneuver, intention tremor was present in approximately one in four (28%) ET patients vs. virtually none (4%) of the Parkinson's patients (p < 0.001). CONCLUSIONS: We evaluated the location, severity, and directionality of postural tremor in ET and PD, and the presence of intention tremor, observing several clinical differences. We hope that detailed phenomenological data on tremor in ET and PD will help practicing physicians delineate the two diseases.

17.
J Neurosci ; 33(6): 2398-407, 2013 Feb 06.
Article in English | MEDLINE | ID: mdl-23392669

ABSTRACT

Parkinson's disease (PD) is a common neurodegenerative disorder, for which there are no effective disease-modifying therapies. The transcription factor ATF4 (activating transcription factor 4) is induced by multiple PD-relevant stressors, such as endoplasmic reticulum stress and oxidative damage. ATF4 may exert either protective or deleterious effects on cell survival, depending on the paradigm. However, the role of ATF4 in the pathogenesis of PD has not been explored. We find that ATF4 levels are increased in neuromelanin-positive neurons in the substantia nigra of a subset of PD patients relative to controls. ATF4 levels are also upregulated in neuronal PC12 cells treated with the dopaminergic neuronal toxins 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenylpyridinium (MPP+). To explore the role of ATF4 in cell survival in PD-relevant contexts, we either silenced or overexpressed ATF4 in cellular models of PD. In neuronal PC12 cells, silencing of ATF4 enhanced cell death in response to either 6-OHDA or MPP+. Conversely, overexpression of ATF4 reduced cell death caused by dopaminergic neuronal toxins. ATF4 was also protective against 6-OHDA-induced death of cultured mouse ventral midbrain dopaminergic neurons. We further show that parkin, a gene associated with autosomal recessive PD, plays a critical role in ATF4-mediated protection. After treatment with 6-OHDA or MPP+, parkin protein levels fall, despite an increase in mRNA levels. ATF4 silencing exacerbates the toxin-induced reduction of parkin, whereas ATF4 overexpression partially preserves parkin levels. Finally, parkin silencing blocked the protective capacity of ATF4. These results indicate that ATF4 plays a protective role in PD through the regulation of parkin.


Subject(s)
Activating Transcription Factor 4/biosynthesis , Neurons/metabolism , Neuroprotective Agents/metabolism , Parkinson Disease/metabolism , Ubiquitin-Protein Ligases/biosynthesis , Activating Transcription Factor 4/physiology , Animals , Cell Death/physiology , Cells, Cultured , HEK293 Cells , Humans , Mice , Neurons/pathology , PC12 Cells , Parkinson Disease/pathology , Rats , Ubiquitin-Protein Ligases/metabolism , Up-Regulation/physiology
19.
Mov Disord ; 27(7): 831-42, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22451330

ABSTRACT

Pathological data from autopsies genotyped for Parkinson's disease (PD)-related mutations in alpha-synuclein, Parkin, PINK1, DJ1, LRRK2, and glucocerebrosidase have accumulated in recent years. The aim of this review is to systematically review all pathological reports of mutation carriers and to identify pathological patterns and gaps in the currently available data. A systematic review of the English literature was done using the terms "Parkinson's disease," "brain pathology," "autopsy," the specific gene nomenclature, and any combination of the above. Most studies included reports of convenience samples: either cases that were preidentified as mutation carriers before autopsy or screens of Lewy body brain banks. Nineteen autopsies of alpha-synuclein mutation carriers, 49 of LRRK2 mutation carriers, nine of Parkin mutation carriers, one of a PINK1 mutation carrier, and 86 of glucocerebrosidase mutation carriers were identified. Most autopsies of alpha-synuclein, LRRK2 G2019S, and glucocerebrosidase mutation carriers demonstrated Lewy body pathology, as opposed to Parkin and LRRK2 non-G2019S mutation carriers. However, there was a marked variability in pathological findings, even among carriers of identical mutations. Pathological data from DJ1 mutation carriers, nonmanifesting mutation carriers (e.g., of LRRK2 mutations), and carriers of a single Parkin mutation were lacking. In gathering together all studies of PD autopsies with an identified genetic risk, this review highlights the wealth of information generated as well as shortcomings in the available data. In particular, there is a need for larger, unbiased pathological studies. Differential association of Lewy pathology with specific mutations may reflect heterogeneity in pathogenic mechanisms among the different PD-related genes.


Subject(s)
Brain/pathology , Genetic Predisposition to Disease/genetics , Parkinson Disease/genetics , Parkinson Disease/pathology , Animals , Humans , Mutation/genetics , Nerve Tissue Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...