Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Proteins ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38699879

ABSTRACT

Cep57, a vital centrosome-associated protein, recruits essential regulatory enzymes for centriole duplication. Its dysfunction leads to anomalies, including reduced centrioles and mosaic-variegated aneuploidy syndrome. Despite functional investigations, understanding structural aspects and their correlation with functions is partial till date. We present the structure of human Cep57 C-terminal microtubule binding (MT-BD) domain, revealing conserved motifs ensuring functional preservation across evolution. A leucine zipper, with an adjacent possible microtubule-binding region, potentially forms a stabilizing scaffold for microtubule nucleation-accommodating pulling and tension from growing microtubules. This study highlights conserved structural features of Cep57 protein, compares them with other analogous proteins, and explores how protein function is maintained across diverse organisms.

2.
Cancer Cell ; 34(1): 136-147.e6, 2018 07 09.
Article in English | MEDLINE | ID: mdl-29990496

ABSTRACT

Activating mutations in the cytosolic 5'-nucleotidase II gene NT5C2 drive resistance to 6-mercaptopurine in acute lymphoblastic leukemia. Here we demonstrate that constitutively active NT5C2 mutations K359Q and L375F reconfigure the catalytic center for substrate access and catalysis in the absence of allosteric activator. In contrast, most relapse-associated mutations, which involve the arm segment and residues along the surface of the inter-monomeric cavity, disrupt a built-in switch-off mechanism responsible for turning off NT5C2. In addition, we show that the C-terminal acidic tail lost in the Q523X mutation functions to restrain NT5C2 activation. These results uncover dynamic mechanisms of enzyme regulation targeted by chemotherapy resistance-driving NT5C2 mutations, with important implications for the development of NT5C2 inhibitor therapies.


Subject(s)
5'-Nucleotidase/genetics , Antimetabolites, Antineoplastic/pharmacology , Drug Resistance, Neoplasm/genetics , Mercaptopurine/pharmacology , Mutation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , 5'-Nucleotidase/chemistry , 5'-Nucleotidase/metabolism , Allosteric Regulation , Animals , Catalytic Domain , Gene Expression Regulation, Leukemic , HEK293 Cells , Humans , Jurkat Cells , Mice, Inbred C57BL , Models, Molecular , Precursor Cell Lymphoblastic Leukemia-Lymphoma/enzymology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Protein Conformation, alpha-Helical , Recurrence , Structure-Activity Relationship
3.
Sci Rep ; 6: 35169, 2016 10 20.
Article in English | MEDLINE | ID: mdl-27762317

ABSTRACT

Tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) play a central role in tryptophan metabolism and are involved in many cellular and disease processes. Here we report the crystal structure of human TDO (hTDO) in a ternary complex with the substrates L-Trp and O2 and in a binary complex with the product N-formylkynurenine (NFK), defining for the first time the binding modes of both substrates and the product of this enzyme. The structure indicates that the dioxygenation reaction is initiated by a direct attack of O2 on the C2 atom of the L-Trp indole ring. The structure also reveals an exo binding site for L-Trp, located ~42 Å from the active site and formed by residues conserved among tryptophan-auxotrophic TDOs. Biochemical and cellular studies indicate that Trp binding at this exo site does not affect enzyme catalysis but instead it retards the degradation of hTDO through the ubiquitin-dependent proteasomal pathway. This exo site may therefore provide a novel L-Trp-mediated regulation mechanism for cellular degradation of hTDO, which may have important implications in human diseases.


Subject(s)
Indoleamine-Pyrrole 2,3,-Dioxygenase/chemistry , Oxygen/chemistry , Protein Structure, Secondary , Tryptophan Oxygenase/chemistry , Tryptophan/chemistry , Catalysis , Crystallography, X-Ray , Humans , Kynurenine/analogs & derivatives , Kynurenine/biosynthesis , Protein Binding/physiology , Tryptophan Oxygenase/metabolism
4.
Protein Sci ; 25(4): 898-904, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26757366

ABSTRACT

In vitro protein stability studies are commonly conducted via thermal or chemical denaturation/renaturation of protein. Conventional data analyses on the protein unfolding/(re)folding require well-defined pre- and post-transition baselines to evaluate Gibbs free-energy change associated with the protein unfolding/(re)folding. This evaluation becomes problematic when there is insufficient data for determining the pre- or post-transition baselines. In this study, fitting on such partial data obtained in protein chemical denaturation is established by introducing second-order differential (SOD) analysis to overcome the limitations that the conventional fitting method has. By reducing numbers of the baseline-related fitting parameters, the SOD analysis can successfully fit incomplete chemical denaturation data sets with high agreement to the conventional evaluation on the equivalent completed data, where the conventional fitting fails in analyzing them. This SOD fitting for the abbreviated isothermal chemical denaturation further fulfills data analysis methods on the insufficient data sets conducted in the two prevalent protein stability studies.


Subject(s)
Protein Denaturation , Proteins/chemistry , Calorimetry, Differential Scanning , Models, Chemical , Protein Folding , Thermodynamics
5.
Proc Natl Acad Sci U S A ; 111(44): E4697-705, 2014 Nov 04.
Article in English | MEDLINE | ID: mdl-25339443

ABSTRACT

Coenzyme Q (CoQ) is an isoprenylated quinone that is essential for cellular respiration and is synthesized in mitochondria by the combined action of at least nine proteins (COQ1-9). Although most COQ proteins are known to catalyze modifications to CoQ precursors, the biochemical role of COQ9 remains unclear. Here, we report that a disease-related COQ9 mutation leads to extensive disruption of the CoQ protein biosynthetic complex in a mouse model, and that COQ9 specifically interacts with COQ7 through a series of conserved residues. Toward understanding how COQ9 can perform these functions, we solved the crystal structure of Homo sapiens COQ9 at 2.4 Å. Unexpectedly, our structure reveals that COQ9 has structural homology to the TFR family of bacterial transcriptional regulators, but that it adopts an atypical TFR dimer orientation and is not predicted to bind DNA. Our structure also reveals a lipid-binding site, and mass spectrometry-based analyses of purified COQ9 demonstrate that it associates with multiple lipid species, including CoQ itself. The conserved COQ9 residues necessary for its interaction with COQ7 comprise a surface patch around the lipid-binding site, suggesting that COQ9 might serve to present its bound lipid to COQ7. Collectively, our data define COQ9 as the first, to our knowledge, mammalian TFR structural homolog and suggest that its lipid-binding capacity and association with COQ7 are key features for enabling CoQ biosynthesis.


Subject(s)
Carrier Proteins/chemistry , Carrier Proteins/metabolism , Lipid Metabolism/physiology , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Ubiquinone/biosynthesis , Animals , Carrier Proteins/genetics , Crystallography, X-Ray , Humans , Membrane Proteins/genetics , Mice , Mice, Mutant Strains , Mitochondrial Proteins/genetics , Mixed Function Oxygenases , Protein Structure, Tertiary , Ubiquinone/genetics
6.
ACS Chem Biol ; 9(10): 2347-58, 2014 Oct 17.
Article in English | MEDLINE | ID: mdl-25079510

ABSTRACT

Calicheamicin γ1I (1) is an enediyne antitumor compound produced by Micromonospora echinospora spp. calichensis, and its biosynthetic gene cluster has been previously reported. Despite extensive analysis and biochemical study, several genes in the biosynthetic gene cluster of 1 remain functionally unassigned. Using a structural genomics approach and biochemical characterization, two proteins encoded by genes from the 1 biosynthetic gene cluster assigned as "unknowns", CalU16 and CalU19, were characterized. Structure analysis revealed that they possess the STeroidogenic Acute Regulatory protein related lipid Transfer (START) domain known mainly to bind and transport lipids and previously identified as the structural signature of the enediyne self-resistance protein CalC. Subsequent study revealed calU16 and calU19 to confer resistance to 1, and reminiscent of the prototype CalC, both CalU16 and CalU19 were cleaved by 1 in vitro. Through site-directed mutagenesis and mass spectrometry, we identified the site of cleavage in each protein and characterized their function in conferring resistance against 1. This report emphasizes the importance of structural genomics as a powerful tool for the functional annotation of unknown proteins.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/genetics , Enediynes/pharmacology , Micromonospora/metabolism , Bacterial Proteins/genetics , Crystallography, X-Ray , Genomics/methods , Lipids/chemistry , Micromonospora/growth & development , Models, Molecular , Molecular Structure , Multigene Family , Mutagenesis, Site-Directed , Mutation/genetics , Protein Structure, Tertiary , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
7.
Nat Chem Biol ; 10(5): 386-91, 2014 May.
Article in English | MEDLINE | ID: mdl-24705591

ABSTRACT

A challenge in the computational design of enzymes is that multiple properties, including substrate binding, transition state stabilization and product release, must be simultaneously optimized, and this has limited the absolute activity of successful designs. Here, we focus on a single critical property of many enzymes: the nucleophilicity of an active site residue that initiates catalysis. We design proteins with idealized serine-containing catalytic triads and assess their nucleophilicity directly in native biological systems using activity-based organophosphate probes. Crystal structures of the most successful designs show unprecedented agreement with computational models, including extensive hydrogen bonding networks between the catalytic triad (or quartet) residues, and mutagenesis experiments demonstrate that these networks are critical for serine activation and organophosphate reactivity. Following optimization by yeast display, the designs react with organophosphate probes at rates comparable to natural serine hydrolases. Co-crystal structures with diisopropyl fluorophosphate bound to the serine nucleophile suggest that the designs could provide the basis for a new class of organophosphate capture agents.


Subject(s)
Catalytic Domain , Serine/metabolism , Crystallography, X-Ray , Hydrolases/metabolism , Models, Molecular , Molecular Structure
8.
FEBS J ; 281(6): 1613-1628, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24456211

ABSTRACT

Cytosolic nucleotidase II (cN-II) from Legionella pneumophila (Lp) catalyzes the hydrolysis of GMP and dGMP displaying sigmoidal curves, whereas catalysis of IMP hydrolysis displayed a biphasic curve in the initial rate versus substrate concentration plots. Allosteric modulators of mammalian cN-II did not activate LpcN-II although GTP, GDP and the substrate GMP were specific activators. Crystal structures of the tetrameric LpcN-II revealed an activator-binding site at the dimer interface. A double mutation in this allosteric-binding site abolished activation, confirming the structural observations. The substrate GMP acting as an activator, partitioning between the allosteric and active site, is the basis for the sigmoidicity of the initial velocity versus GMP concentration plot. The LpcN-II tetramer showed differences in subunit organization upon activator binding that are absent in the activator-bound human cN-II structure. This is the first observation of a structural change induced by activator binding in cN-II that may be the molecular mechanism for enzyme activation. DATABASE: The coordinates and structure factors reported in this paper have been submitted to the Protein Data Bank under the accession numbers 2BDE and 4G63. The accession number of GMP complexed LpcN-II is 4OHF. STRUCTURED DIGITAL ABSTRACT: LpcN-II and LpcN-II bind by molecular sieving (View interaction) LpcN-II and LpcN-II bind by x-ray crystallography (View interaction) [Structured digital abstract was added on 5 March 2014 after original online publication].


Subject(s)
5'-Nucleotidase/chemistry , 5'-Nucleotidase/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Legionella pneumophila/enzymology , 5'-Nucleotidase/genetics , Allosteric Regulation , Bacterial Proteins/genetics , Catalytic Domain , Crystallography, X-Ray , Deoxyguanine Nucleotides/metabolism , Enzyme Activation , Guanosine Diphosphate/metabolism , Guanosine Triphosphate/metabolism , Humans , Kinetics , Legionella pneumophila/genetics , Models, Molecular , Mutagenesis, Site-Directed , Nitrophenols/metabolism , Organophosphorus Compounds/metabolism , Protein Conformation , Protein Structure, Quaternary , Protein Structure, Tertiary , Species Specificity , Substrate Specificity
9.
Biochemistry ; 52(48): 8663-76, 2013 Dec 03.
Article in English | MEDLINE | ID: mdl-24215428

ABSTRACT

Cyanobacterial phycobiliproteins have evolved to capture light energy over most of the visible spectrum due to their bilin chromophores, which are linear tetrapyrroles that have been covalently attached by enzymes called bilin lyases. We report here the crystal structure of a bilin lyase of the CpcS family from Thermosynechococcus elongatus (TeCpcS-III). TeCpcS-III is a 10-stranded ß barrel with two alpha helices and belongs to the lipocalin structural family. TeCpcS-III catalyzes both cognate as well as noncognate bilin attachment to a variety of phycobiliprotein subunits. TeCpcS-III ligates phycocyanobilin, phycoerythrobilin, and phytochromobilin to the alpha and beta subunits of allophycocyanin and to the beta subunit of phycocyanin at the Cys82-equivalent position in all cases. The active form of TeCpcS-III is a dimer, which is consistent with the structure observed in the crystal. With the use of the UnaG protein and its association with bilirubin as a guide, a model for the association between the native substrate, phycocyanobilin, and TeCpcS was produced.


Subject(s)
Bacterial Proteins/chemistry , Cyanobacteria/enzymology , Lyases/chemistry , Phycobiliproteins/chemistry , Amino Acid Sequence , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Sequence Homology, Amino Acid , Spectrum Analysis
10.
ACS Chem Biol ; 8(10): 2293-2300, 2013 Oct 18.
Article in English | MEDLINE | ID: mdl-23978068

ABSTRACT

Small molecule control of intracellular protein levels allows temporal and dose-dependent regulation of protein function. Recently, we developed a method to degrade proteins fused to a mutant dehalogenase (HaloTag2) using small molecule hydrophobic tags (HyTs). Here, we introduce a complementary method to stabilize the same HaloTag2 fusion proteins, resulting in a unified system allowing bidirectional control of cellular protein levels in a temporal and dose-dependent manner. From a small molecule screen, we identified N-(3,5-dichloro-2-ethoxybenzyl)-2H-tetrazol-5-amine as a nanomolar HALoTag2 Stabilizer (HALTS1) that reduces the Hsp70:HaloTag2 interaction, thereby preventing HaloTag2 ubiquitination. Finally, we demonstrate the utility of the HyT/HALTS system in probing the physiological role of therapeutic targets by modulating HaloTag2-fused oncogenic H-Ras, which resulted in either the cessation (HyT) or acceleration (HALTS) of cellular transformation. In sum, we present a general platform to study protein function, whereby any protein of interest fused to HaloTag2 can be either degraded 10-fold or stabilized 5-fold using two corresponding compounds.


Subject(s)
Recombinant Fusion Proteins/metabolism , Small Molecule Libraries/metabolism , Binding Sites , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drosophila Proteins/genetics , HEK293 Cells , Humans , Models, Molecular , Mutation , Protein Stability , Temperature , Ubiquitination
11.
J Am Chem Soc ; 135(36): 13393-9, 2013 Sep 11.
Article in English | MEDLINE | ID: mdl-23924187

ABSTRACT

Genetically encoded unnatural amino acids could facilitate the design of proteins and enzymes of novel function, but correctly specifying sites of incorporation and the identities and orientations of surrounding residues represents a formidable challenge. Computational design methods have been used to identify optimal locations for functional sites in proteins and design the surrounding residues but have not incorporated unnatural amino acids in this process. We extended the Rosetta design methodology to design metalloproteins in which the amino acid (2,2'-bipyridin-5yl)alanine (Bpy-Ala) is a primary ligand of a bound metal ion. Following initial results that indicated the importance of buttressing the Bpy-Ala amino acid, we designed a buried metal binding site with octahedral coordination geometry consisting of Bpy-Ala, two protein-based metal ligands, and two metal-bound water molecules. Experimental characterization revealed a Bpy-Ala-mediated metalloprotein with the ability to bind divalent cations including Co(2+), Zn(2+), Fe(2+), and Ni(2+), with a Kd for Zn(2+) of ∼40 pM. X-ray crystal structures of the designed protein bound to Co(2+) and Ni(2+) have RMSDs to the design model of 0.9 and 1.0 Šrespectively over all atoms in the binding site.


Subject(s)
Amino Acids/chemistry , Cobalt/chemistry , Computational Biology , Metalloproteins/chemical synthesis , Metalloproteins/chemistry , Metalloproteins/isolation & purification , Models, Molecular , Molecular Structure
12.
Structure ; 21(7): 1182-92, 2013 Jul 02.
Article in English | MEDLINE | ID: mdl-23791943

ABSTRACT

Malonyl-coenzyme A decarboxylase (MCD) is found from bacteria to humans, has important roles in regulating fatty acid metabolism and food intake, and is an attractive target for drug discovery. We report here four crystal structures of MCD from human, Rhodopseudomonas palustris, Agrobacterium vitis, and Cupriavidus metallidurans at up to 2.3 Å resolution. The MCD monomer contains an N-terminal helical domain involved in oligomerization and a C-terminal catalytic domain. The four structures exhibit substantial differences in the organization of the helical domains and, consequently, the oligomeric states and intersubunit interfaces. Unexpectedly, the MCD catalytic domain is structurally homologous to those of the GCN5-related N-acetyltransferase superfamily, especially the curacin A polyketide synthase catalytic module, with a conserved His-Ser/Thr dyad important for catalysis. Our structures, along with mutagenesis and kinetic studies, provide a molecular basis for understanding pathogenic mutations and catalysis, as well as a template for structure-based drug design.


Subject(s)
Bacterial Proteins/chemistry , Carboxy-Lyases/chemistry , Mutation, Missense , Amino Acid Sequence , Carboxy-Lyases/deficiency , Carboxy-Lyases/genetics , Catalytic Domain , Crystallography, X-Ray , Deficiency Diseases/genetics , Enzyme Stability , Humans , Hydrogen Bonding , Kinetics , Models, Molecular , Molecular Sequence Data , Protein Structure, Quaternary , Protein Structure, Secondary , Structural Homology, Protein
13.
ACS Chem Biol ; 8(4): 749-57, 2013 Apr 19.
Article in English | MEDLINE | ID: mdl-23330600

ABSTRACT

The Morita-Baylis-Hillman reaction forms a carbon-carbon bond between the α-carbon of a conjugated carbonyl compound and a carbon electrophile. The reaction mechanism involves Michael addition of a nucleophile catalyst at the carbonyl ß-carbon, followed by bond formation with the electrophile and catalyst disassociation to release the product. We used Rosetta to design 48 proteins containing active sites predicted to carry out this mechanism, of which two show catalytic activity by mass spectrometry (MS). Substrate labeling measured by MS and site-directed mutagenesis experiments show that the designed active-site residues are responsible for activity, although rate acceleration over background is modest. To characterize the designed proteins, we developed a fluorescence-based screen for intermediate formation in cell lysates, carried out microsecond molecular dynamics simulations, and solved X-ray crystal structures. These data indicate a partially formed active site and suggest several clear avenues for designing more active catalysts.


Subject(s)
Proteins/metabolism , Catalysis , Kinetics , Molecular Dynamics Simulation , Proteins/chemistry , X-Ray Diffraction
14.
J Struct Funct Genomics ; 13(3): 155-62, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22865330

ABSTRACT

The protein Pspto_3016 is a 117-residue member of the protein domain family PF04237 (DUF419), which is to date a functionally uncharacterized family of proteins. In this report, we describe the structure of Pspto_3016 from Pseudomonas syringae solved by both solution NMR and X-ray crystallography at 2.5 Å resolution. In both cases, the structure of Pspto_3016 adopts a "double wing" α/ß sandwich fold similar to that of protein YjbR from Escherichia coli and to the C-terminal DNA binding domain of the MotA transcription factor (MotCF) from T4 bacteriophage, along with other uncharacterized proteins. Pspto_3016 was selected by the Protein Structure Initiative of the National Institutes of Health and the Northeast Structural Genomics Consortium (NESG ID PsR293).


Subject(s)
Bacterial Proteins/chemistry , Crystallography, X-Ray/methods , DNA-Binding Proteins/chemistry , Magnetic Resonance Spectroscopy/methods , Proteomics/methods , Pseudomonas syringae/chemistry , Amino Acid Motifs , DNA, Bacterial/chemistry , Models, Genetic , Protein Conformation , Protein Folding , Protein Structure, Tertiary , Pseudomonas syringae/genetics , Solutions/chemistry
15.
J Am Chem Soc ; 134(39): 16197-206, 2012 Oct 03.
Article in English | MEDLINE | ID: mdl-22871159

ABSTRACT

Nucleophilic catalysis is a general strategy for accelerating ester and amide hydrolysis. In natural active sites, nucleophilic elements such as catalytic dyads and triads are usually paired with oxyanion holes for substrate activation, but it is difficult to parse out the independent contributions of these elements or to understand how they emerged in the course of evolution. Here we explore the minimal requirements for esterase activity by computationally designing artificial catalysts using catalytic dyads and oxyanion holes. We found much higher success rates using designed oxyanion holes formed by backbone NH groups rather than by side chains or bridging water molecules and obtained four active designs in different scaffolds by combining this motif with a Cys-His dyad. Following active site optimization, the most active of the variants exhibited a catalytic efficiency (k(cat)/K(M)) of 400 M(-1) s(-1) for the cleavage of a p-nitrophenyl ester. Kinetic experiments indicate that the active site cysteines are rapidly acylated as programmed by design, but the subsequent slow hydrolysis of the acyl-enzyme intermediate limits overall catalytic efficiency. Moreover, the Cys-His dyads are not properly formed in crystal structures of the designed enzymes. These results highlight the challenges that computational design must overcome to achieve high levels of activity.


Subject(s)
Biocatalysis , Drug Design , Esterases/chemistry , Esterases/metabolism , Models, Molecular , Catalytic Domain , Esters , Hydrogen Bonding , Hydrolysis , Kinetics
16.
Biochemistry ; 51(37): 7239-49, 2012 Sep 18.
Article in English | MEDLINE | ID: mdl-22876860

ABSTRACT

The solution nuclear magnetic resonance (NMR) structures and backbone (15)N dynamics of the specialized acyl carrier protein (ACP), RpAcpXL, from Rhodopseudomonas palustris, in both the apo form and holo form modified by covalent attachment of 4'-phosphopantetheine at S37, are virtually identical, monomeric, and correspond to the closed conformation. The structures have an extra α-helix compared to the archetypical ACP from Escherichia coli, which has four helices, resulting in a larger opening to the hydrophobic cavity. Chemical shift differences between apo- and holo-RpAcpXL indicated some differences in the hinge region between α2 and α3 and in the hydrophobic cavity environment, but corresponding changes in nuclear Overhauser effect cross-peak patterns were not detected. In contrast to the NMR structures, apo-RpAcpXL was observed in an open conformation in crystals that diffracted to 2.0 Å resolution, which resulted from movement of α3. On the basis of the crystal structure, the predicted biological assembly is a homodimer. Although the possible biological significance of dimerization is unknown, there is potential that the resulting large shared hydrophobic cavity could accommodate the very long-chain fatty acid (28-30 carbons) that this specialized ACP is known to synthesize and transfer to lipid A. These structures are the first representatives of the AcpXL family and the first to indicate that dimerization may be important for the function of these specialized ACPs.


Subject(s)
Acyl Carrier Protein/chemistry , Bacterial Proteins/chemistry , Lipid A/biosynthesis , Lipid A/chemistry , Protein Multimerization , Rhodopseudomonas/chemistry , Acyl Carrier Protein/metabolism , Bacterial Proteins/metabolism , Crystallography, X-Ray , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Quaternary , Protein Structure, Secondary , Protein Structure, Tertiary , Rhodopseudomonas/metabolism
17.
Protein Sci ; 20(2): 396-405, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21154411

ABSTRACT

YbbR domains are widespread throughout Eubacteria and are expressed as monomeric units, linked in tandem repeats or cotranslated with other domains. Although the precise role of these domains remains undefined, the location of the multiple YbbR domain-encoding ybbR gene in the Bacillus subtilis glmM operon and its previous identification as a substrate for a surfactin-type phosphopantetheinyl transferase suggests a role in cell growth, division, and virulence. To further characterize the YbbR domains, structures of two of the four domains (I and IV) from the YbbR-like protein of Desulfitobacterium hafniense Y51 were solved by solution nuclear magnetic resonance and X-ray crystallography. The structures show the domains to have nearly identical topologies despite a low amino acid identity (23%). The topology is dominated by ß-strands, roughly following a "figure 8" pattern with some strands coiling around the domain perimeter and others crossing the center. A similar topology is found in the C-terminal domain of two stress-responsive bacterial ribosomal proteins, TL5 and L25. Based on these models, a structurally guided amino acid alignment identifies features of the YbbR domains that are not evident from naïve amino acid sequence alignments. A structurally conserved cis-proline (cis-Pro) residue was identified in both domains, though the local structure in the immediate vicinities surrounding this residue differed between the two models. The conservation and location of this cis-Pro, plus anchoring Val residues, suggest this motif may be significant to protein function.


Subject(s)
Bacterial Proteins/chemistry , Molecular Dynamics Simulation , Amino Acid Sequence , Crystallography, X-Ray , Desulfitobacterium/chemistry , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Operon , Protein Structure, Tertiary , Sequence Alignment , Sequence Homology, Amino Acid
18.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 12): 1562-6, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-21139196

ABSTRACT

Biosynthetic arginine decarboxylase (ADC; also known as SpeA) plays an important role in the biosynthesis of polyamines from arginine in bacteria and plants. SpeA is a pyridoxal-5'-phosphate (PLP)-dependent enzyme and shares weak sequence homology with several other PLP-dependent decarboxylases. Here, the crystal structure of PLP-bound SpeA from Campylobacter jejuni is reported at 3.0 Šresolution and that of Escherichia coli SpeA in complex with a sulfate ion is reported at 3.1 Šresolution. The structure of the SpeA monomer contains two large domains, an N-terminal TIM-barrel domain followed by a ß-sandwich domain, as well as two smaller helical domains. The TIM-barrel and ß-sandwich domains share structural homology with several other PLP-dependent decarboxylases, even though the sequence conservation among these enzymes is less than 25%. A similar tetramer is observed for both C. jejuni and E. coli SpeA, composed of two dimers of tightly associated monomers. The active site of SpeA is located at the interface of this dimer and is formed by residues from the TIM-barrel domain of one monomer and a highly conserved loop in the ß-sandwich domain of the other monomer. The PLP cofactor is recognized by hydrogen-bonding, π-stacking and van der Waals interactions.


Subject(s)
Bacterial Proteins/chemistry , Campylobacter jejuni/enzymology , Carboxy-Lyases/chemistry , Escherichia coli/enzymology , Catalytic Domain , Crystallography, X-Ray , Protein Structure, Secondary , Pyridoxal Phosphate/chemistry
19.
Biochemistry ; 42(36): 10833-42, 2003 Sep 16.
Article in English | MEDLINE | ID: mdl-12962508

ABSTRACT

We examined the effect of ionizable residues at positions flanking the hydrophobic core of helix-forming polyLeu peptides upon helix-helix interactions within model membrane vesicles composed of dioleoylphosphatidylcholine. The peptides studied were flanked on both the N and C termini either by two Lys (K(2)-flanked peptide), one Lys plus one Asp (DK-flanked peptide), or one Lys plus three Asp (KD(3)-flanked peptide). The fluorescence of a Trp residue positioned at the center of the hydrophobic sequence was used to evaluate peptide behavior. As judged by the concentration dependence of the maximum wavelength of Trp emission, there was significant oligomerization of the KD(3)- and DK-flanked peptides, but not the K(2)-flanked peptide, at neutral pH. At neutral pH mixtures of K(2)- and KD(3)-flanked peptides associated with each other, but mixtures of the K(2)- and DK-flanked peptides did not. Oligomerization by the DK- and KD(3)-flanked peptides decreased under low pH conditions in which the Asp residues were protonated. Additional experiments showed that at neutral pH the KD(3)-flanked peptide showed an increased tendency to oligomerize when as little as 10-15 mol % of an anionic lipid, phosphatidylglycerol, was present. The behavior of the other peptides was not strongly influenced by phosphatidylglycerol. These results can largely be explained by modulation of helix-helix interactions via electrostatic interactions involving the helix-flanking ionizable residues. Such interactions may influence membrane protein folding. The self-association of anionic KD(3)-flanked peptides suggests that additional interactions involving charged residues also can modulate helix-helix association.


Subject(s)
Aspartic Acid/chemistry , Lysine/chemistry , Membranes, Artificial , Peptides/chemistry , Protein Structure, Secondary , Amino Acid Sequence , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Lipid Bilayers/chemistry , Molecular Sequence Data , Phosphatidylcholines/chemistry , Phosphatidylglycerols/chemistry , Spectrometry, Fluorescence/methods , Static Electricity , Tryptophan/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...