Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Int ; 131: 104964, 2019 10.
Article in English | MEDLINE | ID: mdl-31351382

ABSTRACT

Airborne microalgae and cyanobacteria are among the least studied organisms in aerobiology. While those of them living in freshwater and seawater are well recognized, those constituting the components of aerosols are rarely the focus of research. However, their presence has been noted by scientists from all over the world. The presence of these organisms is not indifferent to the environment as they participate in the formation of clouds and influence both the hydrological cycle and Earth's climate. Recent studies have concentrated mostly on the negative impact of airborne cyanobacteria and microalgae, as well as the toxic compounds they produce, on human health. This review focuses on measurement results published on those bioaerosols, combining the achievements of scientists from the last century with the latest reports and trends. Within it gaps in current knowledge are discussed, including the role of airborne organisms in the transport of harmful chemicals like PAHs and heavy metals. The current studies on which it is based emphasize the advantages and disadvantages of the measurement methods used in sampling and analysing. It also visualizes, in the form of maps, where research on bioaerosols has so far been conducted, while at the same time determining the share of organisms potentially dangerous to human health. In addition, we have also tried to recommend future research directions for both environmental and laboratory-based studies.


Subject(s)
Cyanobacteria , Environmental Microbiology , Environmental Pollution/adverse effects , Microalgae , Aerosols , Climate , Environmental Health , Humans , Seawater
2.
Ecotoxicol Environ Saf ; 157: 350-357, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-29631090

ABSTRACT

PM1 aerosols were collected at the coastal station in Gdynia between 1st January and 31st December 2012. The main purpose of the study was to determine the variability in concentrations of mercury Hg(p), organic carbon (OC) and elemental carbon (EC) in PM1 aerosols under varying synoptic conditions in heating and non-heating periods. Additionally, sources of origin and bonds of mercury with carbon species were identified. The highest concentrations of Hg(p), OC and EC were found during the heating period. Then all analyzed PM1 components had a common, local origin related to the consumption of fossil fuels for heating purposes under conditions of lower air temperatures and poor dispersion of pollutants. Long periods without precipitation also led to the increase in concentration of all measured PM1 compounds. In heating period mercury correlated well with elemental carbon and primary and secondary organic carbon when air masses were transported from over the land. At that time, the role of transportation was of minor importance. In the non-heating period, the concentration of all analyzed compounds were lower than in the heating period, which could be associated with the reduced influence of combustion processes, higher precipitation and, in the case of mercury, also the evaporation of aerosols at higher air temperatures. However, when air masses were transported from over the sea or from the port/shipyard areas the mercury concentration increased significantly. In the first case higher air humidity, solar radiation and ozone concentration as well as the presence of marine aerosols could further facilitate the conversion of gaseous mercury into particulate mercury and its concentration increase. In the second case Hg(p) could be adsorbed on particles rich in elemental carbon and primary organic carbon emitted from ships.


Subject(s)
Aerosols/chemistry , Air Pollutants/analysis , Carbon/chemistry , Environmental Monitoring , Mercury/chemistry , Baltic States , Particle Size , Particulate Matter/chemistry , Seasons , Urbanization
SELECTION OF CITATIONS
SEARCH DETAIL
...