Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 9(12)2020 Nov 28.
Article in English | MEDLINE | ID: mdl-33260536

ABSTRACT

High-density lipoprotein (HDL), in addition to promoting reverse cholesterol transport, possesses anti-inflammatory, antioxidative, and antithrombotic activities. Paraoxonase 1 (PON1), carried on HDL in the blood, can contribute to these antiatherogenic activities. The PON1-Q192R polymorphism involves a change from glutamine (Q variant) to arginine (R variant) at position 192 of the PON1 protein and affects its enzymatic activity. The molecular basis of PON1 association with cardiovascular and neurological diseases is not fully understood. To get insight into the function of PON1 in human disease, we examined how genetic attenuation of PON1 levels/activity affect plasma proteomes of mice and humans. Healthy participants (48.9 years old, 50% women) were randomly recruited from the Poznan population. Four-month-old Pon1-/- (n = 17) and Pon1+/+ (n = 8) mice (50% female) were used in these experiments. Plasma proteomes were analyzed using label-free mass spectrometry. Bioinformatics analysis was carried out using the Ingenuity Pathway Analysis (IPA) resources. PON1-Q192R polymorphism and Pon1-/- genotype induced similar changes in plasma proteomes of humans and mice, respectively. The top molecular network, identified by IPA, affected by these changes involved proteins participating in lipoprotein metabolism. Other PON1 genotype-dependent proteomic changes affect different biological networks in humans and mice: "cardiovascular, neurological disease, organismal injury/abnormalities" in PON1-192QQ humans and "humoral immune response, inflammatory response, protein synthesis" and "cell-to-cell signaling/interaction, hematological system development/function, immune cell trafficking" in Pon1-/- mice. Our findings suggest that PON1 interacts with molecular pathways involved in lipoprotein metabolism, acute/inflammatory response, and complement/blood coagulation that are essential for blood homeostasis. Modulation of those interactions by the PON1 genotype can account for its association with cardiovascular and neurological diseases.

2.
Sci Rep ; 10(1): 10726, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32612202

ABSTRACT

Cystathionine ß-synthase (CBS)-deficient patients are prone to vascular thrombosis. In contrast, Cbs-/- mice show no abnormalities in blood coagulation. To identify molecular basis underlying these disparately different thrombotic phenotypes, we analyzed plasma proteomes of Cbs-/- vs. Cbs+/+ mice (8-month-old, 12/group, sex-matched) and CBS-/- vs. CBS+/+ humans (37 ± 7-year-old, 10-14/group, sex-matched) using label-free mass spectrometry. We identified 117 and 41 differentiating plasma proteins in Cbs-/- mice and CBS-/- humans, respectively. Twenty-one proteins were shared between CBS-/- humans and Cbs-/- mice, with sixteen changed in the opposite direction. Proteins involved in blood coagulation and complement/coagulation cascades represented a greater fraction of the differentiating proteins in CBS-/- patients (51%) than in Cbs-/- mice (21%). Top canonical pathways, identified by Ingenuity Pathways Analysis, such as LXR/RXR, FXR/RXR activation (- log[P-value] = 30-31) and atherosclerosis signaling (- log[P-value] = 10-11) were similarly affected in Cbs-/- mice and CBS-/- humans. The Coagulation System was affected stronger in CBS-/- humans than in Cbs-/- mice (- log[P-value] = 15 vs. 10, respectively) while acute phase response and complement system were affected stronger in Cbs-/- mice (- log[P-value] = 33 and 22, respectively) than in humans (- log[P-value] = 22 and 6, respectively). Other pathways, including IL-7 signaling and B cell development were affected only in Cbs-/- mice. Taken together, our findings suggest that differences in these processes, in particular in the Coagulation System, could account for the thrombotic phenotype in CBS-/- patients and the absence of thrombosis in Cbs-/- mice. Overall, our findings suggest that Cbs-/- mice have a better adaptive response to protect from prothrombotic effects of hyperhomocysteinemia than CBS-/- humans.


Subject(s)
Cystathionine beta-Synthase/deficiency , Disease Models, Animal , Disease Resistance , Proteome/analysis , Proteome/metabolism , Thrombosis/pathology , Adult , Animals , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Thrombosis/metabolism
3.
Int J Mol Sci ; 20(12)2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31242583

ABSTRACT

Ischemic stroke induces brain injury via thrombotic or embolic mechanisms involving large or small vessels. Cystathionine ß-synthase deficiency (CBS), an inborn error of metabolism, is associated with vascular thromboembolism, the major cause of morbidity and mortality in affected patients. Because thromboembolism involves the brain vasculature in these patients, we hypothesize that CBS deficiency and ischemic stroke have similar molecular phenotypes. We used label-free mass spectrometry for quantification of changes in serum proteomes in CBS-deficient patients (n = 10) and gender/age-matched unaffected controls (n = 14), as well as in patients with cardioembolic (n = 17), large-vessel (n = 26), or lacunar (n = 25) ischemic stroke subtype. In CBS-deficient patients, 40 differentially expressed serum proteins were identified, of which 18 were associated with elevated homocysteine (Hcy) and 22 were Hcy-independent. We also identified Hcy-independent differentially expressed serum proteins in ischemic stroke patients, some of which were unique to a specific subtype: 10 of 32 for cardioembolic vs. large-vessel, six of 33 for cardioembolic vs. lacunar, and six of 23 for large-vessel vs. lacunar. There were significant overlaps between proteins affected by CBS deficiency and ischemic stroke, particularly the cardioembolic subtype, similar to protein overlaps between ischemic stroke subtypes. Top molecular pathways affected by CBS deficiency and ischemic stroke subtypes included acute phase response signaling and coagulation system. Similar molecular networks centering on NFκB were affected by CBS deficiency and stroke subtypes. These findings suggest common mechanisms involved in the pathologies of CBS deficiency and ischemic stroke subtypes.


Subject(s)
Biomarkers/blood , Brain Ischemia/complications , Cystathionine beta-Synthase/deficiency , Proteome , Proteomics , Stroke/blood , Stroke/etiology , Adult , Computational Biology/methods , Female , Humans , Male , Middle Aged , Proteomics/methods , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...