Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(3)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36770123

ABSTRACT

The significance of ion activity in transport through a porous concrete material sample with steel rebar in its center and bathing solution is presented. For the first time, different conventions and models of ion activity are compared in their significance and influence on the ion fluxes. The study closes an interpretational gap between ion activity in a stand-alone (stagnant) electrolyte solution and ion transport (dynamic) through concrete pores. Ionic activity models developed in stationary systems, namely, the Debye-Hückel (DH), extended DH, Davies, Truesdell-Jones, and Pitzer models, were used for modeling the transport of ions driven through the activity gradient. The activities of ions are incorporated into a frame of the Nernst-Planck-Poisson (NPP) equations. Calculations were done with COMSOL software for a real concrete microstructure determined by X-ray computed tomography. The concentration profiles of four ions (Na+, Cl-, K+, OH-), the ionic strength, and the electric potential in mortar (with pores) and concrete samples (with aggregates and pores) are presented and compared. The Pitzer equation gave the most reliable results for all systems studied. The difference between the concentration profiles calculated with this equation and with the assumption of the ideality of the solution is negligible while the potential profiles are clearly distinguishable.

2.
Membranes (Basel) ; 12(8)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-36005678

ABSTRACT

The use of external electronic enforcement in ion-sensor measurements is described. The objective is to improve the open-circuit (potentiometric) sensitivity of ion sensors. The sensitivity determines the precision of analyte determination and has been of interest since the beginning of ion-sensor technology. Owing to the theoretical interpretation founded by W.E. Nernst, the sensitivity is characterized by the slope and numerically predicted. It is empirically determined and validated during calibration by measuring an electromotive force between the ion sensor and the reference electrode. In practice, this measurement is made with commercial potentiometers that function as unaltered "black boxes". This report demonstrates that by gaining access to a meter's electrical systems and allowing for versatile signal summations, the empirical slope can be increased favorably. To prove the validity of the approach presented, flow-through ion-sensor blocks used in routine measurements of blood electrolytes (Na+, K+, Li+, Cl-) and multielectrode probes with flat surfaces, similar to those applied previously for monitoring transmembrane fluxes of Na+, K+, Cl- through living biological cells, are used. Several options to serve real-life electroanalytical challenges, including linear calibration for sensors with high-resistance membranes, responses with non-Nernstian slopes, non-linear calibration, and discrimination of nonfunctional sensors, are shown.

3.
Membranes (Basel) ; 12(6)2022 May 30.
Article in English | MEDLINE | ID: mdl-35736276

ABSTRACT

In this study, the performance and long-time evaluation of solid-state composite (SSC) reference electrodes were investigated. The stability of all the SSC reference electrodes was continuously monitored by using potentiometry and electrochemical impedance spectroscopy methods over a period of several months. A multi-solution protocol was used to study the influence of the ionic strength of the sample solution, ion charge, and mobility, and the sample pH values on the performance of the reference electrodes. The SSC reference electrodes were used in the calibration of commercial indicator electrodes for different ions at different temperatures. The concentrations of K+, Na+, Ca2+, and Cl- ions and pH values were measured in river water samples at different temperatures using the SSC reference electrodes. The obtained results for the same samples were compared with the results given by an independent laboratory specialized in routine water analyses. The agreement between the results was very good and even better than the case where commercial reference electrodes were used. Our study showed that the SSC reference electrodes exhibit good long-term stability and excellent performance, both in the calibrations and analyses of environmental samples.

4.
Sensors (Basel) ; 21(14)2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34300652

ABSTRACT

Intense interest in reference electrode design and fabrication has recently been enriched with the application of 3D printing of electrodes with salt-loaded PVC membranes. This type of material is attractive in sensor technology and is challenging to implement in 3D. In this report, several improvements and simplifications in the technology were focused on and supported by a fundamental electrochemical characterization.


Subject(s)
Polyvinyl Chloride , Printing, Three-Dimensional , Electrodes
5.
Membranes (Basel) ; 10(12)2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33334071

ABSTRACT

Ion sensors, conventionally known as ion-selective membrane electrodes, were devised 100 years ago with the invention of a pH electrode with a glass membrane (in 1906 Cremer, in 1909 Haber and Klemensiewicz) [...].

6.
Materials (Basel) ; 13(23)2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33287334

ABSTRACT

A non-equilibrium diffusion-reaction model is proposed to describe chloride transport and binding in cementitious materials. A numerical solution for this non-linear transport with reaction problem is obtained using the finite element method. The effective chloride diffusion coefficients and parameters of the chloride binding are determined using the inverse method based on a diffusion-reaction model and experimentally measured chloride concentrations. The investigations are performed for two significantly different cements: ordinary Portland and blast furnace cements. The results are compared with the classical diffusion model and appropriate apparent diffusion coefficients. The role of chloride binding, with respect to the different binding isotherms applied, in the overall transport of chlorides is discussed, along with the applicability of the two models. The proposed work allows the determination of important parameters that influence the longevity of concrete structures. The developed methodology can be extended to include more ions, electrostatic interactions, and activity coefficients for even more accurate estimation of the longevity.

7.
Membranes (Basel) ; 10(5)2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32349446

ABSTRACT

In the mitochondrial matrix there are insoluble, osmotically inactive complexes that maintain constant pH and calcium concentration. In the present paper we examine the properties of insoluble calcium and magnesium salts, namely phosphates, carbonates and polyphosphates which might play this role. We find that non-stoichiometric, magnesium-rich carbonated apatite, with very low crystallinity, precipitates in the matrix under physiological conditions. Precipitated salt acts as pH buffer, and hence can contribute in maintaining ATP production in ischemic conditions, delaying irreversible damages to heart and brain cells after stroke.

8.
Membranes (Basel) ; 10(3)2020 Mar 12.
Article in English | MEDLINE | ID: mdl-32178452

ABSTRACT

We measured concentration changes of sodium, potassium, chloride ions, pH and the transepithelial potential difference by means of ion-selective electrodes, which were placed on both sides of a human bronchial epithelial 16HBE14σ cell line grown on a porous support in the presence of ion channel blockers. We found that, in the isosmotic transepithelial concentration gradient of either sodium or chloride ions, there is an electroneutral transport of the isosmotic solution of sodium chloride in both directions across the cell monolayer. The transepithelial potential difference is below 3 mV. Potassium and pH change plays a minor role in ion transport. Based on our measurements, we hypothesize that in a healthy bronchial epithelium, there is a dynamic balance between water absorption and secretion. Water absorption is caused by the action of two exchangers, Na/H and Cl/HCO3, secreting weakly dissociated carbonic acid in exchange for well dissociated NaCl and water. The water secretion phase is triggered by an apical low volume-dependent factor opening the Cystic Fibrosis Transmembrane Regulator CFTR channel and secreting anions that are accompanied by paracellular sodium and water transport.

9.
Membranes (Basel) ; 9(12)2019 Nov 29.
Article in English | MEDLINE | ID: mdl-31795415

ABSTRACT

Several types of liquid membrane and solid-state reference electrodes based on different plastics were fabricated. In the membranes studied, equitransferent organic (QB) and inorganic salts (KCl) are dispersed in polyvinyl chloride (PVC), polyurethane (PU), urea-formaldehyde resin (UF), polyvinyl acetate (PVA), as well as remelted KCl in order to show the matrix impact on the reference membranes' behavior. The comparison of potentiometic performance was made using specially designed standardized testing protocols. A problem in the reference electrode research and literature has been a lack of standardized testing, which leads to difficulties in comparing different types, qualities, and properties of reference electrodes. Herein, several protocols were developed to test the electrodes' performance with respect to stability over time, pH sensitivity, ionic strength, and various ionic species. All of the prepared reference electrodes performed well in at least some respect and would be suitable for certain applications as described in the text. Most of the reference types, however, demonstrated some weakness that had not been previously highlighted in the literature, due in large part to the lack of exhaustive and/or consistent testing protocols.

10.
Sensors (Basel) ; 19(8)2019 Apr 20.
Article in English | MEDLINE | ID: mdl-31009998

ABSTRACT

Cystic Fibrosis (CF) is the most common fatal human genetic disease, which is caused by a defect in an anion channel protein (CFTR) that affects ion and water transport across the epithelium. We devised an apparatus to enable the measurement of concentration changes of sodium, potassium, chloride, pH, and transepithelial potential difference by means of ion-selective electrodes that were placed on both sides of a 16HBE14σ human bronchial epithelial cell line that was grown on a porous support. Using flat miniaturized ISE electrodes allows for reducing the medium volume adjacent to cells to approximately 20 µL and detecting changes in ion concentrations that are caused by transport through the cell layer. In contrast to classic electrochemical measurements, in our experiments neither the calibration of electrodes nor the interpretation of results is simple. The calibration solutions might affect cell physiology, the medium composition might change the direction of actions of the membrane channels and transporters, and water flow that might trigger or cut off the transport pathways accompanies the transport of ions. We found that there is an electroneutral transport of sodium chloride in both directions of the cell monolayer in the isosmotic transepithelial concentration gradient of sodium or chloride ions. The ions and water are transported as an isosmotic solution of 145 mM of NaCl.


Subject(s)
Chlorides/isolation & purification , Epithelial Cells/metabolism , Potassium/isolation & purification , Sodium/isolation & purification , Anions/chemistry , Chlorides/metabolism , Epithelial Cells/chemistry , Humans , Hydrogen-Ion Concentration , Ion Transport , Ion-Selective Electrodes , Potassium/metabolism , Sodium/metabolism , Transendothelial and Transepithelial Migration
11.
Sensors (Basel) ; 19(6)2019 Mar 13.
Article in English | MEDLINE | ID: mdl-30871163

ABSTRACT

Polystyrene cross-linked with divinylbenzene and functionalized by a quaternary ammonium cation anion site is used as the membrane of a hydrogencarbonate (i.e., bicarbonate) ion-selective electrode. The polystyrene matrix membrane improves the selectivity towards interfering lipophilic ions in comparison to previously described polyvinyl chloride membranes. The reason for this behaviour is sought in coupled ion-exchange and pore-diffusion processes in the membrane and the resulting kinetic discrimination of interfering ions. The electrode is successfully used for determination of bicarbonates in mineral drinking waters. The simplex method is employed to refine the analytical outcome.

12.
Anal Chem ; 90(15): 9644-9649, 2018 08 07.
Article in English | MEDLINE | ID: mdl-29932635

ABSTRACT

The Nernst-Planck-Poisson model is used for modeling the sensitivity and selectivity of ion-selective electrodes (ISEs) with plastic membranes. Two pivotal parameters characterizing ISE response are in focus: sensitivity and selectivity. An interpretation of sensitivity, which considers the concurrent influence of anions and cations on the ISE slope, is presented. The interpretation of selectivity shows the validity and limits of approaches hitherto taken to measure the true (unbiased) selectivity coefficient. The validity of more idealized interpretations by the diffusion-layer model is conceived.

13.
Bioelectrochemistry ; 117: 65-73, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28633068

ABSTRACT

Cystic Fibrosis (CF) is the most common fatal human genetic disease. It is caused by the defect in a single anion channel protein which affects ion and water transport across the epithelial tissue. A flat multi-electrode platform of diameter 12mm, allowing for measurement of four ions: sodium, potassium, hydrogen and chloride by exchangeable/replaceable ion-selective electrodes is described. The measurement is possible owing to the architecture of the platform which accommodates all the electrodes and inlets/outlets. The platform fits to the cup and operates in a small volume of the solution bathing the living epithelial cell layer (membrane) deposited on a porous support of the cup, which allows for effective monitoring of ion concentration changes. By applying two multi-electrode platforms, it is possible to measure the ion transmembrane fluxes. The inlet and outlet tubes in the platforms allow for on-fly change of the calibrants, ion-concentration changes and ion channel blockers. Using different ion-concentration gradients and blockers of ion-transporting molecules we show for the first time that sodium ions flow from the basolateral to apical face of the cell monolayer via a paracellular route and return also via a transcellular one, while chloride anions are transported back and forth exclusively via a transcellular route.


Subject(s)
Cell Membrane/metabolism , Epithelial Cells/cytology , Microtechnology/instrumentation , Bicarbonates/metabolism , Cell Line , Cell Membrane/drug effects , Cell Survival , Chlorides/metabolism , Colforsin/pharmacology , Cystic Fibrosis Transmembrane Conductance Regulator/antagonists & inhibitors , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Electrodes , Humans , Ion Transport/drug effects , Sodium/metabolism
14.
Anal Chem ; 89(2): 1068-1072, 2017 01 17.
Article in English | MEDLINE | ID: mdl-27957840

ABSTRACT

Novel reference electrodes with a solid contact coated by a heterogeneous polymer membrane are described. The electrodes are obtained using Ag nanoparticles, AgBr, KBr suspended in tetrahydrofuran solution of PVC and DOS and deposited on Ag substrate, or another substrate covered with Ag, by drop casting. After a short period of soaking in a KBr solution, stable and reproducible formal potentials of -157 ± 2 mV (vs Ag/AgCl/3 M KCl) were observed, and the solid-contact reference electrodes were ready to use. It is shown that the described reference electrodes are relatively insensitive to the changes in the sample matrix, the concentrations of ions, the pH and the redox potential. These electrodes can also be fabricated in miniaturized form, and thus used to produce miniaturized multielectrode probes.

15.
Anal Chem ; 88(6): 3009-14, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26864883

ABSTRACT

In situ potentiometry and null ellipsometry was combined and used as a tool to follow the kinetics of biofouling of ion-selective electrodes (ISEs). The study was performed using custom-made solid-contact K(+)-ISEs consisting of a gold surface with immobilized 6-(ferrocenyl)hexanethiol as ion-to-electron transducer that was coated with a potassium-selective plasticized polymer membrane. The electrode potential and the ellipsometric signal (corresponding to the amount of adsorbed protein) were recorded simultaneously during adsorption of bovine serum albumin (BSA) at the surface of the K(+)-ISEs. This in situ method may become useful in developing sensors with minimized biofouling.


Subject(s)
Biofouling , Potentiometry/instrumentation , Serum Albumin, Bovine/chemistry
16.
Anal Chim Acta ; 888: 36-43, 2015 Aug 12.
Article in English | MEDLINE | ID: mdl-26320956

ABSTRACT

A new method to convert the potential of an ion-selective electrode to concentration or activity in potentiometric titration is proposed. The advantage of this method is that the electrode standard potential and the slope of the calibration curve do not have to be known. Instead two activities on the titration curve have to be estimated e.g. the starting activity before the titration begins and the activity at the end of the titration in the presence of large excess of titrant. This new method is beneficial when the analyte is in a complexed matrix or in a harsh environment which affects the properties of the electrode and the traditional calibration procedure with standard solutions cannot be used. The new method was implemented both in a method of linearization based on the Grans's plot and in determination of the stability constant of a complex and the concentration of the complexing ligand in the sample. The new method gave accurate results when using titrations data from experiments with samples of known composition and with real industrial harsh black liquor sample. A complexometric titration model was also developed.

17.
Anal Chem ; 87(17): 8665-72, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26241734

ABSTRACT

Ion-selective electrodes (ISEs) containing neutral ionophores are used in clinical, industrial, and environmental analysis. The wide range of applications requires deep theoretical description. This work concentrates on the development of the general approach to the description of electro-diffusion processes, namely, Nernst-Planck-Poisson (NPP) model to allow the description of the time-dependent responses in the case of complexation reactions occurring in the ion-selective membranes. The impact of the chemical reaction on the calibration curves and apparent selectivity of ISE is discussed. Results obtained using NPP model with time-dependent reaction are compared with those obtained with the Phase Boundary Model (PBM), as well as with the previous solutions of NPP model, using the infinite reaction rates and constant ligand concentration assumption. The validity of these assumptions is investigated and the limitations of PBM in the description of neutral-carrier ISE are discussed.


Subject(s)
Chemistry Techniques, Analytical/instrumentation , Electrochemical Techniques/instrumentation , Ion-Selective Electrodes/standards , Models, Theoretical , Calcium/chemistry , Diffusion , Ions , Sodium/chemistry
18.
Anal Chem ; 86(1): 390-4, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24283934

ABSTRACT

An ion-selective multielectrode bisensor system is designed to ensure reliable real-time concentration measurements of sodium, potassium, chloride, and pH in a small volume of biological liquid bathing a living human bronchial epithelial cell monolayer. The bisensor system allows the monitoring of major ions, which are simultaneously transported through the epithelia in both directions.


Subject(s)
Biosensing Techniques/methods , Epithelial Cells/metabolism , Ion Transport/physiology , Ion-Selective Electrodes , Biosensing Techniques/instrumentation , Cells, Cultured , Epithelial Cells/chemistry , Humans , Microelectrodes , Time Factors
19.
Analyst ; 138(18): 5216-20, 2013 Sep 21.
Article in English | MEDLINE | ID: mdl-23846152

ABSTRACT

A new type of all-solid-state reference electrode was designed and characterized. The electrodes are based on a polymer/inorganic salt composite and a silver/silver chloride reference element. A rigorous testing procedure was used to reveal the possible influence of pH, solution composition, as well as the concentration and mobility of ions. The tests demonstrated the insensitivity of the electrodes to the matrix effects, excellent stability of the potential readings, and significantly reduced leakage of inorganic salt. In the performed tests the composite reference electrodes were on a par with or better than the high-quality commercial reference electrodes. The reference electrodes described here are of analytical quality allowing for continuous, prolonged, and intensive usage.

20.
Anal Chem ; 85(3): 1555-61, 2013 Feb 05.
Article in English | MEDLINE | ID: mdl-23281967

ABSTRACT

Thioamide derivatives of p-tert-butylcalix[4]arene were used as ionophores in the development of solid-contact ion-selective electrodes based on conducting polymer poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate (PEDOT/PSS) which was synthesized by electrodeposition on the glassy carbon electrodes. The typical ion-selective membranes with optionally two different plasticizers [bis(2-ethylhexyl)sebacate (DOS) and 2-nitrophenyl octyl ether (NPOE)] were investigated. The potentiometric selectivity coefficients were determined by separate solution method (SSM) for Pb(2+) over Cu(2+), Cd(2+), Ca(2+), Na(+), and K(+). High selectivity toward Pb(2+) was obtained. By applying two conditioning protocols, a low detection limit log(a(DL)) ≈ -9 was achieved. The fabricated ion-selective electrodes were used to determine Pb(2+) concentration in environmental samples. The obtained results were compared to analysis done by inductively coupled plasma mass spectrometry (ICPMS).

SELECTION OF CITATIONS
SEARCH DETAIL
...