Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 12(14): 17018-17028, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32176476

ABSTRACT

The genesis, propagation, and dimensions of fractal-etch patterns that form anodically on front- or back-illuminated n-Si(100) photoelectrodes in contact with 11.9 M NH4F (aqueous) have been investigated during either a linear potential sweep or a constant potential hold (E = +6.0 V versus Ag/AgCl). Optical images collected in situ during electrochemical experiments revealed the location and underlying mechanism of initiation and propagation of the structures on the surface. X-ray photoelectron spectroscopic (XPS) data collected for samples emersed from the electrolyte at varied times provided detailed information about the chemistry of the surface during fractal etching. The fractal structure was strongly influenced by the orientation of the crystalline Si sample. The etch patterns were initially generated at points along the circumference of bubbles that formed upon immersion of n-Si(100) samples in the electrolyte, most likely due to the electrochemical and electronic isolation of areas beneath bubbles. XPS data showed the presence of a tensile-stressed silicon surface throughout the etching process as well as the presence of SiOxFy on the surface. The two-dimensional fractal dimension, Df,2D, of the patterns increased with etching time to a maximum observed value of Df,2D = 1.82. Promotion of fractal etching near etch masks that electrochemically and electronically isolated areas of the photoelectrode surface enabled the selective placement of highly branched structures at desired locations on an electrode surface.

2.
J Vis Exp ; (154)2019 12 03.
Article in English | MEDLINE | ID: mdl-31868172

ABSTRACT

Long-term space flights and cis-lunar research platforms require a sustainable and light life-support hardware which can be reliably employed outside the Earth's atmosphere. So-called 'solar fuel' devices, currently developed for terrestrial applications in the quest for realizing a sustainable energy economy on Earth, provide promising alternative systems to existing air-revitalization units employed on the International Space Station (ISS) through photoelectrochemical water-splitting and hydrogen production. One obstacle for water (photo-) electrolysis in reduced gravity environments is the absence of buoyancy and the consequential, hindered gas bubble release from the electrode surface. This causes the formation of gas bubble froth layers in proximity to the electrode surface, leading to an increase in ohmic resistance and cell-efficiency loss due to reduced mass transfer of substrates and products to and from the electrode. Recently, we have demonstrated efficient solar hydrogen production in microgravity environment, using an integrated semiconductor-electrocatalyst system with p-type indium phosphide as the light-absorber and a rhodium electrocatalyst. By nanostructuring the electrocatalyst using shadow nanosphere lithography and thereby creating catalytic 'hot spots' on the photoelectrode surface, we could overcome gas bubble coalescence and mass transfer limitations and demonstrated efficient hydrogen production at high current densities in reduced gravitation. Here, the experimental details are described for the preparations of these nanostructured devices and further on, the procedure for their testing in microgravity environment, realized at the Bremen Drop Tower during 9.3 s of free fall.


Subject(s)
Hydrogen/chemistry , Weightlessness , Sunlight
3.
Nat Commun ; 9(1): 2527, 2018 07 10.
Article in English | MEDLINE | ID: mdl-29991728

ABSTRACT

Long-term space missions require extra-terrestrial production of storable, renewable energy. Hydrogen is ascribed a crucial role for transportation, electrical power and oxygen generation. We demonstrate in a series of drop tower experiments that efficient direct hydrogen production can be realized photoelectrochemically in microgravity environment, providing an alternative route to existing life support technologies for space travel. The photoelectrochemical cell consists of an integrated catalyst-functionalized semiconductor system that generates hydrogen with current densities >15 mA/cm2 in the absence of buoyancy. Conditions are described adverting the resulting formation of ion transport blocking froth layers on the photoelectrodes. The current limiting factors were overcome by controlling the micro- and nanotopography of the Rh electrocatalyst using shadow nanosphere lithography. The behaviour of the applied system in terrestrial and microgravity environment is simulated using a kinetic transport model. Differences observed for varied catalyst topography are elucidated, enabling future photoelectrode designs for use in reduced gravity environments.

4.
Faraday Discuss ; 208(0): 523-535, 2018 09 03.
Article in English | MEDLINE | ID: mdl-29796446

ABSTRACT

Photoelectrochemical (PEC) cells offer the possibility of carbon-neutral solar fuel production through artificial photosynthesis. The pursued design involves technologically advanced III-V semiconductor absorbers coupled via an interfacial film to an electrocatalyst layer. These systems have been prepared by in situ surface transformations in electrochemical environments. High activity nanostructured electrocatalysts are required for an efficiently operating cell, optimized in their optical and electrical properties. We demonstrate that shadow nanosphere lithography (SNL) is an auspicious tool to systematically create three-dimensional electrocatalyst nanostructures on the semiconductor photoelectrode through controlling their morphology and optical properties. First results are demonstrated by means of the photoelectrochemical production of hydrogen on p-type InP photocathodes where hitherto applied photoelectrodeposition and SNL-deposited Rh electrocatalysts are compared based on their J-V and spectroscopic behavior. We show that smaller polystyrene particle masks achieve higher defect nanostructures of rhodium on the photoelectrode which leads to a higher catalytic activity and larger short circuit currents. Structural analyses including HRSEM and the analysis of the photoelectrode surface composition by using photoelectron spectroscopy support and complement the photoelectrochemical observations. The optical performance is further compared to theoretical models of the nanostructured photoelectrodes on light scattering and propagation.

5.
ChemSusChem ; 10(22): 4657-4663, 2017 11 23.
Article in English | MEDLINE | ID: mdl-28636780

ABSTRACT

The interfacial properties of electrolessly deposited Pt nanoparticles (Pt-NPs) on p-Si and p+ -Si electrodes were investigated on the nanometer scale using a combination of scanning probe methods. Atomic force microscopy (AFM) showed highly dispersed Pt-NPs with diameters of 20-150 nm on the Si surface. Conductive AFM measurements showed that only approximately half of the particles exhibited measurable contact currents, with a factor of 103 difference in current observed between particles at a given bias. Local current-voltage measurements revealed a rectifying junction with a resistance ≥10 MΩ at the Pt-NP/p-Si interface, whereas the Pt-NP/p+ -Si samples formed an ohmic junction with a local resistance ≥1 MΩ. The particles were strongly attached to the sample surface in air. However, in an electrolyte, the adhesion of the particles to the surface was substantially lower, and most of the particles had tip-contact currents that varied by a factor of approximately 10. Scanning electrochemical microscopy (SECM) showed smaller but more uniform electrochemical currents for the particles relative to the currents observed by conductive AFM. In accord with the conductive AFM measurements, the SECM measurements showed conductance through the substrate for only a minority of the particles. These results suggest that the electrochemical performance of the electrolessly deposited Pt nanoparticles on Si can be ascribed to: 1) The high resistance of the contact between the particles and the substrate, 2) the low (<50 %) fraction of particles that support high currents, and 3) the low adhesion of the particles to the surface when in contact with the electrolyte.


Subject(s)
Electrochemical Techniques/methods , Electrodes , Microscopy, Atomic Force/methods , Nanoparticles/chemistry , Platinum , Silicon , Surface Properties
6.
Nat Commun ; 7: 13706, 2016 12 02.
Article in English | MEDLINE | ID: mdl-27910847

ABSTRACT

Theoretical limiting efficiencies have a critical role in determining technological viability and expectations for device prototypes, as evidenced by the photovoltaics community's focus on detailed balance. However, due to their multicomponent nature, photoelectrochemical devices do not have an equivalent analogue to detailed balance, and reported theoretical efficiency limits vary depending on the assumptions made. Here we introduce a unified framework for photoelectrochemical device performance through which all previous limiting efficiencies can be understood and contextualized. Ideal and experimentally realistic limiting efficiencies are presented, and then generalized using five representative parameters-semiconductor absorption fraction, external radiative efficiency, series resistance, shunt resistance and catalytic exchange current density-to account for imperfect light absorption, charge transport and catalysis. Finally, we discuss the origin of deviations between the limits discussed herein and reported water-splitting efficiencies. This analysis provides insight into the primary factors that determine device performance and a powerful handle to improve device efficiency.

7.
Nat Commun ; 6: 8286, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26369620

ABSTRACT

Photosynthesis is nature's route to convert intermittent solar irradiation into storable energy, while its use for an industrial energy supply is impaired by low efficiency. Artificial photosynthesis provides a promising alternative for efficient robust carbon-neutral renewable energy generation. The approach of direct hydrogen generation by photoelectrochemical water splitting utilizes customized tandem absorber structures to mimic the Z-scheme of natural photosynthesis. Here a combined chemical surface transformation of a tandem structure and catalyst deposition at ambient temperature yields photocurrents approaching the theoretical limit of the absorber and results in a solar-to-hydrogen efficiency of 14%. The potentiostatically assisted photoelectrode efficiency is 17%. Present benchmarks for integrated systems are clearly exceeded. Details of the in situ interface transformation, the electronic improvement and chemical passivation are presented. The surface functionalization procedure is widely applicable and can be precisely controlled, allowing further developments of high-efficiency robust hydrogen generators.

8.
ChemSusChem ; 7(10): 2832-8, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25138735

ABSTRACT

A hybrid photovoltaic/photoelectrochemical (PV/PEC) water-splitting device with a benchmark solar-to-hydrogen conversion efficiency of 5.2% under simulated air mass (AM) 1.5 illumination is reported. This cell consists of a gradient-doped tungsten-bismuth vanadate (W:BiVO4 ) photoanode and a thin-film silicon solar cell. The improvement with respect to an earlier cell that also used gradient-doped W:BiVO4 has been achieved by simultaneously introducing a textured substrate to enhance light trapping in the BiVO4 photoanode and further optimization of the W gradient doping profile in the photoanode. Various PV cells have been studied in combination with this BiVO4 photoanode, such as an amorphous silicon (a-Si:H) single junction, an a-Si:H/a-Si:H double junction, and an a-Si:H/nanocrystalline silicon (nc-Si:H) micromorph junction. The highest conversion efficiency, which is also the record efficiency for metal oxide based water-splitting devices, is reached for a tandem system consisting of the optimized W:BiVO4 photoanode and the micromorph (a-Si:H/nc-Si:H) cell. This record efficiency is attributed to the increased performance of the BiVO4 photoanode, which is the limiting factor in this hybrid PEC/PV device, as well as better spectral matching between BiVO4 and the nc-Si:H cell.


Subject(s)
Bismuth/chemistry , Photochemical Processes , Solar Energy , Vanadates/chemistry , Water/chemistry
9.
Chemphyschem ; 13(12): 2899-909, 2012 Aug 27.
Article in English | MEDLINE | ID: mdl-22890851

ABSTRACT

Efficient photoelectrochemical devices for water splitting benefit from the highest material quality and dedicated surface preparation achieved by epitaxial growth. InP(100)-based half-cells show significant solar-to-hydrogen efficiencies, but require a bias due to insufficient voltage. Tandem absorber structures may provide both adequate potential and efficient utilization of the solar spectrum. We propose epitaxial dilute nitride GaPNAs photocathodes on Si(100) substrates to combine close-to-optimum limiting efficiency, lattice-matched growth, and established surface preparation. Prior to a discussion of the challenging III-V/Si(100) heterojunction, we describe the closely related epitaxial preparation of InP(100) surfaces and its beneficial impact on photoelectrochemical water-splitting performance. Analogies and specific differences to GaP(100) surfaces are discussed based on in situ reflectance anisotropy and on two-photon photoemission results. Preliminary experiments regarding GaP/Si(100) photoelectrochemistry and dilute nitride GaPN heteroepitaxy on Si(100) confirm the potential of the GaPNAs/Si tandem absorber structure for future water-splitting devices.

10.
Chemphyschem ; 13(12): 2807-8, 2012 Aug 27.
Article in English | MEDLINE | ID: mdl-22447718
11.
Chemphyschem ; 11(13): 2919-30, 2010 Sep 10.
Article in English | MEDLINE | ID: mdl-20718068

ABSTRACT

Electrodeposition is used for the preparation of nanoparticles and nanostructures that allow, in principle, surface plasmon excitation. The (photo)electrodeposition process of Rh and Au nanoparticles as well as of heterodimeric enzymes onto silicon surfaces is investigated and the resulting structures are discussed with regard to applications in photoelectroctalysis and biosensing. Electrodeposition of Rh onto H-terminated p-Si surfaces generates nanostructures of the metal nanoparticles with simultaneous oxidation of the substrate thus forming nano-dimensioned metal-oxide-semiconductor (MOS)-type contacts. The excess minority carrier harvesting in these nanoemitter structures, where semispherical space charge layers underneath the metal exist are discussed based on spectral sensitivity and capacitance measurements The deposition of Au nanoparticles by a combined chemical-electrochemical method on Si is presented as an example for sensing actuators where the resonance frequency is changed by adsorption. Similarly, site-selective deposition of the enzyme reverse transcriptase onto nanostructured (step-bunched) silicon serves as precursor experiment for biosensing in a Kretschmann-type ATR configuration. Future applications based on plasmonically active structures are outlined.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Rhodium/chemistry , Silicon/chemistry , Electrodes , Semiconductors , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...