Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 26(2): 1023-1037, 2020 02.
Article in English | MEDLINE | ID: mdl-31376229

ABSTRACT

In 2017, the Birmingham Institute of Forest Research (BIFoR) began to conduct Free Air Carbon Dioxide Enrichment (FACE) within a mature broadleaf deciduous forest situated in the United Kingdom. BIFoR FACE employs large-scale infrastructure, in the form of lattice towers, forming 'arrays' which encircle a forest plot of ~30 m diameter. BIFoR FACE consists of three treatment arrays to elevate local CO2 concentrations (e[CO2 ]) by +150 µmol/mol. In practice, acceptable operational enrichment (ambient [CO2 ] + e[CO2 ]) is ±20% of the set point 1-min average target. There are a further three arrays that replicate the infrastructure and deliver ambient air as paired controls for the treatment arrays. For the first growing season with e[CO2 ] (April to November 2017), [CO2 ] measurements in treatment and control arrays show that the target concentration was successfully delivered, that is: +147 ± 21 µmol/mol (mean ± SD) or 98 ± 14% of set point enrichment target. e[CO2 ] treatment was accomplished for 97.7% of the scheduled operation time, with the remaining time lost due to engineering faults (0.6% of the time), CO2 supply issues (0.6%) or adverse weather conditions (1.1%). CO2 demand in the facility was driven predominantly by wind speed and the formation of the deciduous canopy. Deviations greater than 10% from the ambient baseline CO2 occurred <1% of the time in control arrays. Incidences of cross-contamination >80 µmol/mol (i.e. >53% of the treatment increment) into control arrays accounted for <0.1% of the enrichment period. The median [CO2 ] values in reconstructed three-dimensional [CO2 ] fields show enrichment somewhat lower than the target but still well above ambient. The data presented here provide confidence in the facility setup and can be used to guide future next-generation forest FACE facilities built into tall and complex forest stands.


Subject(s)
Carbon Dioxide , Forests , Air , Plant Leaves , Seasons , United Kingdom
2.
Glob Chang Biol ; 20(8): 2492-504, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24604779

ABSTRACT

Three young northern temperate forest communities in the north-central United States were exposed to factorial combinations of elevated carbon dioxide (CO2 ) and tropospheric ozone (O3 ) for 11 years. Here, we report results from an extensive sampling of plant biomass and soil conducted at the conclusion of the experiment that enabled us to estimate ecosystem carbon (C) content and cumulative net primary productivity (NPP). Elevated CO2 enhanced ecosystem C content by 11%, whereas elevated O3 decreased ecosystem C content by 9%. There was little variation in treatment effects on C content across communities and no meaningful interactions between CO2 and O3 . Treatment effects on ecosystem C content resulted primarily from changes in the near-surface mineral soil and tree C, particularly differences in woody tissues. Excluding the mineral soil, cumulative NPP was a strong predictor of ecosystem C content (r(2) = 0.96). Elevated CO2 enhanced cumulative NPP by 39%, a consequence of a 28% increase in canopy nitrogen (N) content (g N m(-2) ) and a 28% increase in N productivity (NPP/canopy N). In contrast, elevated O3 lowered NPP by 10% because of a 21% decrease in canopy N, but did not impact N productivity. Consequently, as the marginal impact of canopy N on NPP (∆NPP/∆N) decreased through time with further canopy development, the O3 effect on NPP dissipated. Within the mineral soil, there was less C in the top 0.1 m of soil under elevated O3 and less soil C from 0.1 to 0.2 m in depth under elevated CO2 . Overall, these results suggest that elevated CO2 may create a sustained increase in NPP, whereas the long-term effect of elevated O3 on NPP will be smaller than expected. However, changes in soil C are not well-understood and limit our ability to predict changes in ecosystem C content.


Subject(s)
Air Pollutants/pharmacology , Carbon Dioxide/pharmacology , Carbon/analysis , Forests , Ozone/pharmacology , Trees/drug effects , Acer/drug effects , Acer/growth & development , Betula/drug effects , Betula/growth & development , Biomass , Ecosystem , Models, Theoretical , Soil/chemistry , Trees/growth & development , United States
3.
Trends Plant Sci ; 15(1): 5-10, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19955012

ABSTRACT

Current forest Free Air CO(2) Enrichment (FACE) experiments are reaching completion. Therefore, it is time to define the scientific goals and priorities of future experimental facilities. In this opinion article, we discuss the following three overarching issues (i) What are the most urgent scientific questions and how can they be addressed? (ii) What forest ecosystems should be investigated? (iii) Which other climate change factors should be coupled with elevated CO(2) concentrations in future experiments to better predict the effects of climate change? Plantations and natural forests can have conflicting purposes for high productivity and environmental protection. However, in both cases the assessment of carbon balance and how this will be affected by elevated CO(2) concentrations and the interacting climate change factors is the most pressing priority for future experiments.


Subject(s)
Carbon Dioxide/analysis , Trees/metabolism , Carbon Dioxide/metabolism , Ecosystem , Greenhouse Effect
4.
Plant Cell Environ ; 31(9): 1317-24, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18518914

ABSTRACT

A rising global population and demand for protein-rich diets are increasing pressure to maximize agricultural productivity. Rising atmospheric [CO(2)] is altering global temperature and precipitation patterns, which challenges agricultural productivity. While rising [CO(2)] provides a unique opportunity to increase the productivity of C(3) crops, average yield stimulation observed to date is well below potential gains. Thus, there is room for improving productivity. However, only a fraction of available germplasm of crops has been tested for CO(2) responsiveness. Yield is a complex phenotypic trait determined by the interactions of a genotype with the environment. Selection of promising genotypes and characterization of response mechanisms will only be effective if crop improvement and systems biology approaches are closely linked to production environments, that is, on the farm within major growing regions. Free air CO(2) enrichment (FACE) experiments can provide the platform upon which to conduct genetic screening and elucidate the inheritance and mechanisms that underlie genotypic differences in productivity under elevated [CO(2)]. We propose a new generation of large-scale, low-cost per unit area FACE experiments to identify the most CO(2)-responsive genotypes and provide starting lines for future breeding programmes. This is necessary if we are to realize the potential for yield gains in the future.


Subject(s)
Carbon Dioxide/metabolism , Crops, Agricultural/physiology , Food Supply , Research Design , Acclimatization , Air , Crops, Agricultural/genetics , Genotype , Greenhouse Effect , Phenotype , Photosynthesis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...