Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Commun Biol ; 6(1): 782, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37495841

ABSTRACT

Recent studies revealed mechanisms by which the microbiome affects its host's brain, behavior and wellbeing, and that dysbiosis - persistent microbiome-imbalance - is associated with the onset and progress of various chronic diseases, including addictive behaviors. Yet, understanding of the ecological and evolutionary processes that shape the host-microbiome ecosystem and affect the host state, is still limited. Here we propose that competition dynamics within the microbiome, associated with host-microbiome mutual regulation, may promote dysbiosis and aggravate addictive behaviors. We construct a mathematical framework, modeling the dynamics of the host-microbiome ecosystem in response to alterations. We find that when this ecosystem is exposed to substantial perturbations, the microbiome may shift towards a composition that reinforces the new host state. Such a positive feedback loop augments post-perturbation imbalances, hindering attempts to return to the initial equilibrium, promoting relapse episodes and prolonging addictions. We show that the initial microbiome composition is a key factor: a diverse microbiome enhances the ecosystem's resilience, whereas lower microbiome diversity is more prone to lead to dysbiosis, exacerbating addictions. This framework provides evolutionary and ecological perspectives on host-microbiome interactions and their implications for host behavior and health, while offering verifiable predictions with potential relevance to clinical treatments.


Subject(s)
Dysbiosis , Microbiota , Humans , Microbiota/physiology , Brain
2.
Cell ; 186(7): 1328-1336.e10, 2023 03 30.
Article in English | MEDLINE | ID: mdl-37001499

ABSTRACT

Stressed plants show altered phenotypes, including changes in color, smell, and shape. Yet, airborne sounds emitted by stressed plants have not been investigated before. Here we show that stressed plants emit airborne sounds that can be recorded from a distance and classified. We recorded ultrasonic sounds emitted by tomato and tobacco plants inside an acoustic chamber, and in a greenhouse, while monitoring the plant's physiological parameters. We developed machine learning models that succeeded in identifying the condition of the plants, including dehydration level and injury, based solely on the emitted sounds. These informative sounds may also be detectable by other organisms. This work opens avenues for understanding plants and their interactions with the environment and may have significant impact on agriculture.


Subject(s)
Plants , Sound , Stress, Physiological
3.
Environ Microbiol ; 24(1): 507-516, 2022 01.
Article in English | MEDLINE | ID: mdl-35068041

ABSTRACT

Locust plagues are a notorious, ancient phenomenon. These swarming pests tend to aggregate and perform long migrations, decimating cultivated fields along their path. When population density is low, however, the locusts will express a cryptic, solitary, non-aggregating phenotype that is not considered a pest. Although the transition from the solitary to the gregarious phase has been well studied, associated shifts in the locust's microbiome have yet to be addressed. Here, using 16S rRNA amplicon sequencing, we compared the bacterial composition of solitary desert locusts before and after a phase transition. Our findings revealed that the microbiome is altered during the phase transition, and that a major aspect of this change is the acquisition of Weissella (Firmicutes). Our findings led us to hypothesize that the locust microbiome plays a role in inducing aggregation behaviour, contributing to the formation and maintenance of a swarm. Employing a mathematical model, we demonstrate the potential evolutionary advantage of inducing aggregation under different conditions; specifically, when the aggregation-inducing microbe exhibits a relatively high horizontal transmission rate. This is the first report of a previously unknown and important aspect of locust phase transition, demonstrating that the phase shift includes a shift in the gut and integument bacterial composition.


Subject(s)
Grasshoppers , Microbiota , Animals , Bacteria/genetics , Grasshoppers/genetics , Microbiota/genetics , Population Density , RNA, Ribosomal, 16S/genetics
4.
Proc Biol Sci ; 288(1951): 20203162, 2021 05 26.
Article in English | MEDLINE | ID: mdl-34034521

ABSTRACT

Cultural evolution of cooperation under vertical and non-vertical cultural transmission is studied, and conditions are found for fixation and coexistence of cooperation and defection. The evolution of cooperation is facilitated by its horizontal transmission and by an association between social interactions and horizontal transmission. The effect of oblique transmission depends on the horizontal transmission bias. Stable polymorphism of cooperation and defection can occur, and when it does, reduced association between social interactions and horizontal transmission evolves, which leads to a decreased frequency of cooperation and lower population mean fitness. The deterministic conditions are compared to outcomes of stochastic simulations of structured populations. Parallels are drawn with Hamilton's rule incorporating relatedness and assortment.


Subject(s)
Cultural Evolution , Game Theory , Biological Evolution , Cooperative Behavior
6.
Clin Infect Dis ; 72(11): e848-e855, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33070171

ABSTRACT

BACKGROUND: Computerized decision support systems are becoming increasingly prevalent with advances in data collection and machine learning (ML) algorithms. However, they are scarcely used for empiric antibiotic therapy. Here, we predict the antibiotic resistance profiles of bacterial infections of hospitalized patients using ML algorithms applied to patients' electronic medical records (EMRs). METHODS: The data included antibiotic resistance results of bacterial cultures from hospitalized patients, alongside their EMRs. Five antibiotics were examined: ceftazidime (n = 2942), gentamicin (n = 4360), imipenem (n = 2235), ofloxacin (n = 3117), and sulfamethoxazole-trimethoprim (n = 3544). We applied lasso logistic regression, neural networks, gradient boosted trees, and an ensemble that combined all 3 algorithms, to predict antibiotic resistance. Variable influence was gauged by permutation tests and Shapely Additive Explanations analysis. RESULTS: The ensemble outperformed the separate models and produced accurate predictions on test set data. When no knowledge regarding the infecting bacterial species was assumed, the ensemble yielded area under the receiver-operating characteristic (auROC) scores of 0.73-0.79 for different antibiotics. Including information regarding the bacterial species improved the auROCs to 0.8-0.88. Variables' effects on predictions were assessed and found to be consistent with previously identified risk factors for antibiotic resistance. CONCLUSIONS: We demonstrate the potential of ML to predict antibiotic resistance of bacterial infections of hospitalized patients. Moreover, we show that rapidly gained information regarding the infecting bacterial species can improve predictions substantially. Clinicians should consider the implementation of such systems to aid correct empiric therapy and to potentially reduce antibiotic misuse.


Subject(s)
Electronic Health Records , Machine Learning , Drug Resistance, Microbial , Humans , Logistic Models , ROC Curve
7.
J Antimicrob Chemother ; 76(1): 239-248, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33020811

ABSTRACT

OBJECTIVES: Microbial resistance exhibits dependency patterns between different antibiotics, termed cross-resistance and collateral sensitivity. These patterns differ between experimental and clinical settings. It is unclear whether the differences result from biological reasons or from confounding, biasing results found in clinical settings. We set out to elucidate the underlying dependency patterns between resistance to different antibiotics from clinical data, while accounting for patient characteristics and previous antibiotic usage. METHODS: Additive Bayesian network modelling was employed to simultaneously estimate relationships between variables in a dataset of bacterial cultures derived from hospitalized patients and tested for resistance to multiple antibiotics. Data contained resistance results, patient demographics and previous antibiotic usage, for five bacterial species: Escherichia coli (n = 1054), Klebsiella pneumoniae (n = 664), Pseudomonas aeruginosa (n = 571), CoNS (n = 495) and Proteus mirabilis (n = 415). RESULTS: All links between resistance to the various antibiotics were positive. Multiple direct links between resistance of antibiotics from different classes were observed across bacterial species. For example, resistance to gentamicin in E. coli was directly linked with resistance to ciprofloxacin (OR = 8.39, 95% credible interval 5.58-13.30) and sulfamethoxazole/trimethoprim (OR = 2.95, 95% credible interval 1.97-4.51). In addition, resistance to various antibiotics was directly linked with previous antibiotic usage. CONCLUSIONS: Robust relationships among resistance to antibiotics belonging to different classes, as well as resistance being linked to having taken antibiotics of a different class, exist even when taking into account multiple covariate dependencies. These relationships could help inform choices of antibiotic treatment in clinical settings.


Subject(s)
Escherichia coli , Klebsiella pneumoniae , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bayes Theorem , Drug Resistance, Microbial , Humans , Microbial Sensitivity Tests
8.
Philos Trans R Soc Lond B Biol Sci ; 375(1808): 20190599, 2020 09 28.
Article in English | MEDLINE | ID: mdl-32772664

ABSTRACT

Paternal care, particularly in cases of uncertain paternity, carries significant costs. Extensive research, both theoretical and experimental, has explored the conditions in which paternal care behaviour would be favoured. Common explanations include an adjustment of care with uncertainty in paternity and limited accuracy in parentage assessment. Here, we propose a new explanation that microbes may play a role in the evolution of paternal care among their hosts. Using computational models, we demonstrate that microbes associated with increased paternal care could be favoured by natural selection. We find that microbe-induced paternal care could evolve under wider conditions than suggested by genetic models. Moreover, we show that microbe-induced paternal care is more likely to evolve when considering paternal care interactions that increase microbial transmission, such as feeding and grooming. Our results imply that factors affecting the composition of host microbiome may also alter paternal behaviour. This article is part of the theme issue 'The role of the microbiome in host evolution'.


Subject(s)
Biological Evolution , Feeding Behavior , Grooming , Paternal Behavior , Selection, Genetic , Animals , Computational Biology , Models, Biological
9.
Proc Biol Sci ; 287(1920): 20192754, 2020 02 12.
Article in English | MEDLINE | ID: mdl-32075531

ABSTRACT

Cooperation is a fundamental behaviour observed in all forms of life. The evolution of cooperation has been widely studied, but almost all theories focused on the cooperating individual and its genes. We suggest a different approach, taking into account the microbes carried by the interacting individuals. Accumulating evidence reveals that microbes can affect their host's well-being and behaviour, yet hosts can evolve mechanisms to resist the manipulations of their microbes. We thus propose that coevolution of microbes with their hosts may favour microbes that induce their host to cooperate. Using computational modelling, we show that microbe-induced cooperation can evolve and be maintained in a wide range of conditions, including when facing hosts' resistance to the microbial effect. We find that host-microbe coevolution leads the population to a rock-paper-scissors dynamics that enables maintenance of cooperation in a polymorphic state. Our results suggest a mechanism for the evolution and maintenance of cooperation that may be relevant to a wide variety of organisms, including cases that are difficult to explain by current theories. This study provides a new perspective on the coevolution of hosts and their microbiome, emphasizing the potential role of microbes in shaping their host's behaviour.


Subject(s)
Biological Evolution , Microbiota , Animals , Computer Simulation
10.
Mol Cell ; 74(4): 785-800.e7, 2019 05 16.
Article in English | MEDLINE | ID: mdl-30948267

ABSTRACT

Antibiotics can induce mutations that cause antibiotic resistance. Yet, despite their importance, mechanisms of antibiotic-promoted mutagenesis remain elusive. We report that the fluoroquinolone antibiotic ciprofloxacin (cipro) induces mutations by triggering transient differentiation of a mutant-generating cell subpopulation, using reactive oxygen species (ROS). Cipro-induced DNA breaks activate the Escherichia coli SOS DNA-damage response and error-prone DNA polymerases in all cells. However, mutagenesis is limited to a cell subpopulation in which electron transfer together with SOS induce ROS, which activate the sigma-S (σS) general-stress response, which allows mutagenic DNA-break repair. When sorted, this small σS-response-"on" subpopulation produces most antibiotic cross-resistant mutants. A U.S. Food and Drug Administration (FDA)-approved drug prevents σS induction, specifically inhibiting antibiotic-promoted mutagenesis. Further, SOS-inhibited cell division, which causes multi-chromosome cells, promotes mutagenesis. The data support a model in which within-cell chromosome cooperation together with development of a "gambler" cell subpopulation promote resistance evolution without risking most cells.


Subject(s)
Anti-Bacterial Agents/adverse effects , Drug Resistance, Bacterial/genetics , Escherichia coli/genetics , Mutagenesis/genetics , Cell Division/drug effects , Ciprofloxacin/adverse effects , DNA Damage/drug effects , DNA-Directed DNA Polymerase/genetics , Drug Resistance, Bacterial/drug effects , Escherichia coli/drug effects , Escherichia coli/pathogenicity , Gene Expression Regulation, Bacterial/drug effects , Mutagenesis/drug effects , Mutation , Reactive Oxygen Species/metabolism , SOS Response, Genetics/drug effects , Sigma Factor/genetics
11.
BMC Evol Biol ; 17(1): 143, 2017 06 17.
Article in English | MEDLINE | ID: mdl-28623896

ABSTRACT

BACKGROUND: Natural selection favors changes that lead to genotypes possessing high fitness. A conflict arises when several mutations are required for adaptation, but each mutation is separately deleterious. The process of a population evolving from a genotype encoding for a local fitness maximum to a higher fitness genotype is termed an adaptive peak shift. RESULTS: Here we suggest cooperative behavior as a factor that can facilitate adaptive peak shifts. We model cooperation in a public goods scenario, wherein each individual contributes resources that are later equally redistributed among all cooperating individuals. We use mathematical modeling and stochastic simulations to study the effect of cooperation on peak shifts in both panmictic and structured populations. Our results show that cooperation can substantially affect the rate of complex adaptation. Furthermore, we show that cooperation increases the population diversity throughout the peak shift process, thus increasing the robustness of the population to sudden environmental changes. CONCLUSIONS: We provide a new explanation to adaptive valley crossing in natural populations and suggest that the long term evolution of a species depends on its social behavior.


Subject(s)
Biological Evolution , Cooperative Behavior , Models, Genetic , Adaptation, Physiological , Environment , Genetics, Population , Genotype , Mutation , Selection, Genetic
12.
Nat Commun ; 8: 14040, 2017 01 12.
Article in English | MEDLINE | ID: mdl-28079112

ABSTRACT

The evolution of altruistic behaviour, which is costly to the donor but beneficial for the recipient, is among the most intriguing questions in evolutionary biology. Several theories have been proposed to explain it, including kin selection, group selection and reciprocity. Here we propose that microbes that manipulate their hosts to act altruistically could be favoured by selection, and may play a role in the widespread occurrence of altruism. Using computational models, we find that microbe-induced altruism can explain the evolution of host altruistic behaviour under wider conditions than host-centred theories, including in a fully mixed host population, without repeating interactions or individual recognition. Our results suggest that factors such as antibiotics that kill microbes might negatively affect cooperation in a wide range of organisms.


Subject(s)
Altruism , Biological Evolution , Microbiota , Models, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...