Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Learn Mem ; 212: 107930, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692391

ABSTRACT

Positive social comparative feedback is hypothesized to generate a dopamine response in the brain, similar to reward, by enhancing expectancies to support motor skill learning. However, no studies have utilized neuroimaging to examine this hypothesized dopaminergic mechanism. Therefore, the aim of this preliminary study was to investigate the effect of positive social comparative feedback on dopaminergic neural pathways measured by resting state connectivity. Thirty individuals practiced an implicit, motor sequence learning task and were assigned to groups that differed in feedback type. One group received feedback about their actual response time to complete the task (RT ONLY), while the other group received feedback about their response time with positive social comparison (RT + POS). Magnetic resonance imaging was acquired at the beginning and end of repetitive motor practice with feedback to measure practice-dependent changes in resting state brain connectivity. While both groups showed improvements in task performance and increases in performance expectancies, ventral tegmental area and the left nucleus accumbens (mesolimbic dopamine pathway) resting state connectivity increased in the RT + POS group but not in the RT ONLY group. Instead, the RT ONLY group showed increased connectivity between ventral tegmental area and primary motor cortex. Positive social comparative feedback during practice of a motor sequence task may induce a dopaminergic response in the brain along the mesolimbic pathway. However, given that absence of effects on expectancies and motor learning, more robust and individualized approaches may be needed to provide beneficial psychological and behavioral effects.


Subject(s)
Magnetic Resonance Imaging , Neural Pathways , Nucleus Accumbens , Ventral Tegmental Area , Humans , Male , Female , Young Adult , Adult , Ventral Tegmental Area/physiology , Ventral Tegmental Area/diagnostic imaging , Neural Pathways/physiology , Nucleus Accumbens/physiology , Nucleus Accumbens/diagnostic imaging , Dopamine/metabolism , Dopamine/physiology , Feedback, Psychological/physiology , Motor Cortex/physiology , Motor Cortex/diagnostic imaging , Brain/physiology , Brain/diagnostic imaging , Motor Skills/physiology , Practice, Psychological
2.
Eur J Neurosci ; 56(4): 4469-4485, 2022 08.
Article in English | MEDLINE | ID: mdl-35781898

ABSTRACT

Motor action selection engages a network of frontal and parietal brain regions. After stroke, individuals activate a similar network, however, activation is higher, especially in the contralesional hemisphere. The current study examined the effect of practice on action selection performance and brain activation after stroke. Sixteen individuals with chronic stroke (Upper Extremity Fugl-Meyer motor score range: 18-61) moved a joystick with the more-impaired hand in two conditions: Select (externally cued choice; move right or left based on an abstract rule) and Execute (simple response; move same direction every trial). On Day 1, reaction time (RT) was longer in Select compared to Execute, which corresponded to increased activation primarily in regions in the contralesional action selection network including dorsal premotor, supplementary motor, anterior cingulate and parietal cortices. After 4 days of practice, behavioural performance improved (decreased RT), and only contralesional parietal cortex significantly increased during Select. Higher brain activation on Day 1 in the bilateral action selection network, dorsolateral prefrontal cortex and contralesional sensory cortex predicted better performance on Day 4. Overall, practice led to improved action selection performance and reduced brain activation. Systematic changes in practice conditions may allow the targeting of specific components of the motor network during rehabilitation after stroke.


Subject(s)
Stroke Rehabilitation , Stroke , Brain Mapping , Humans , Magnetic Resonance Imaging , Parietal Lobe , Reaction Time/physiology
3.
Front Psychol ; 13: 1005705, 2022.
Article in English | MEDLINE | ID: mdl-36760911

ABSTRACT

Introduction: Positive social comparative feedback indicates to the learner that they are performing better than others. While this type feedback supports motor skill learning in some tasks, the effect of social comparative feedback on implicit motor sequence learning remains unknown. The aim of this study was to determine the effect of positive social comparative feedback on the learning of and expectancies for a motor sequence task. Methods: Forty-eight individuals practiced a joystick-based sequence task and were divided into three feedback groups: CONTROL (no performance feedback), RT ONLY (response time only feedback), and RT+POS (response time plus positive social comparison). Participants attended sessions on two consecutive days: Day 1 for repetitive motor practice/skill acquisition and Day 2 for retention testing. Performance related expectancies, like perceived competence, were measured before and after motor practice on Day 1 and at retention on Day 2. Results: While all groups improved with practice, the CONTROL group showed better overall performance/learning (faster response times) compared with the RT ONLY group. Despite similar response times, the RT+POS showed higher peak velocities than the RT ONLY group. Overall, the RT+POS and CONTROL demonstrated increases in perceived competence while the RT ONLY group did not. Discussion: The results of this study suggest that feedback content is an important consideration during motor practice sessions since feedback without context (RT ONLY) may be detrimental to motor sequence learning. The results also suggest that, if providing performance related feedback during practice of a skill that relies on implicit sequence learning processes, comparative context may be necessary for enhancing expectancies and supporting.

4.
J Neurosci Methods ; 359: 109216, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33971202

ABSTRACT

BACKGROUND: Fractional anisotropy (FA) and mean diffusivity (MD) are measures derived from diffusion-weighted imaging that represent the integrity of the corticospinal tract (CST) after stroke. Some studies of the motor system after stroke extract FA and MD from native space while others extract from standard space making comparison across studies challenging. NEW METHOD: The purpose was to compare CST integrity measures extracted from standard versus native space in individuals with chronic stroke. Twenty-four individuals with stroke underwent diffusion-weighted imaging and motor impairment assessment. The spatial location of the CST was identified using four commonly utilized approaches; therefore, our results are applicable to a variety of approaches. RESULTS: FA extracted from standard space (FAstd) was significantly different from FA extracted from native space (FAnat) for all four approaches; FAstd was greater than FAnat for three approaches. The relationship between ipsilesional CST FA and UE FM was significant for all approaches and similar regardless of extraction space. MDstd was significantly different from MDnat for most approaches, however, the directionality of the differences was not consistent. COMPARISON WITH EXISTING METHOD(S): Our study shows that extraction space influences diffusion-based microstructural integrity values (FA and MD) of the CST in individuals with stroke, which is important when considering methods for aggregating CST integrity data across studies. The relationship between CST integrity and motor impairment appears to be robust to extraction space. CONCLUSIONS: The differences we identified are important for comparing FA and MD values across studies that use different extraction space. Our results provide context for future meta-analyses of diffusion-based metrics of CST integrity in individuals with stroke.


Subject(s)
Pyramidal Tracts , Stroke , Anisotropy , Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging , Humans , Pyramidal Tracts/diagnostic imaging , Stroke/complications , Stroke/diagnostic imaging
5.
Hum Brain Mapp ; 41(9): 2514-2526, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32090440

ABSTRACT

Diffusion tensor imaging (DTI) can be used to index white matter integrity of the corticospinal tract (CST) after stroke; however, the psychometric properties of DTI-based measures of white matter integrity are unknown. The purpose of this study was to examine test-retest reliability as determined by intraclass correlation coefficients (ICC) and calculate minimal detectable change (MDC) of DTI-based measures of CST integrity using three different approaches: a Cerebral Peduncle approach, a Probabilistic Tract approach, and a Tract Template approach. Eighteen participants with chronic stroke underwent DTI on the same magnetic resonance imaging scanner 4 days apart. For the Cerebral Peduncle approach, a researcher hand drew masks at the cerebral peduncle. For the Probabilistic Tract approach, tractography was seeded in motor areas of the cortex to the cerebral peduncle. For the Tract Template approach, a standard CST template was transformed into native space. For all approaches, the researcher performing analyses was blind to participant number and day of data collection. All three approaches had good to excellent test-retest reliability for fractional anisotropy (FA; ICCs >0.786). Mean diffusivity, axial diffusivity, and radial diffusivity were less reliable than FA. The ICC values were highest and MDC values were the smallest for the most automated approach (Tract Template), followed by the combined manual/automated approach (Probabilistic Tract) then the manual approach (Cerebral Peduncle). The results of this study may have implications for how DTI-based measures of CST integrity are used to define impairment, predict outcomes, and interpret change after stroke.


Subject(s)
Diffusion Tensor Imaging/methods , Pyramidal Tracts/pathology , Stroke/pathology , Adult , Aged , Cerebral Peduncle/diagnostic imaging , Chronic Disease , Female , Humans , Male , Middle Aged , Pyramidal Tracts/diagnostic imaging , Reproducibility of Results , Stroke/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...