Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(14): eadf5492, 2023 04 07.
Article in English | MEDLINE | ID: mdl-37027474

ABSTRACT

Sustaining ecosystem services (ES) critical to human well-being is hindered by many practitioners lacking access to ES models ("the capacity gap") or knowledge of the accuracy of available models ("the certainty gap"), especially in the world's poorer regions. We developed ensembles of multiple models at an unprecedented global scale for five ES of high policy relevance. Ensembles were 2 to 14% more accurate than individual models. Ensemble accuracy was not correlated with proxies for research capacity, indicating that accuracy is distributed equitably across the globe and that countries less able to research ES suffer no accuracy penalty. By making these ES ensembles and associated accuracy estimates freely available, we provide globally consistent ES information that can support policy and decision-making in regions with low data availability or low capacity for implementing complex ES models. Thus, we hope to reduce the capacity and certainty gaps impeding local- to global-scale movement toward ES sustainability.


Subject(s)
Conservation of Natural Resources , Ecosystem , Humans , Policy
2.
Sports Biomech ; 20(1): 55-70, 2021 Feb.
Article in English | MEDLINE | ID: mdl-30480477

ABSTRACT

Inertial measurement units (IMUs) provide a practical solution for attaining key performance data for wheelchair sports. The effects of IMU placement position on the identification of propulsion characteristics are unknown. The aim of this study was to determine the variability in the reliability of cycle time measurements (time between hand contacts) across IMU locations on the chair frame (axle housings), and wheels (axle, push rim, outer rim), on both the left and right sides (n = 8). Contacts were defined by spikes in the resultant acceleration data, corresponding to impact between the hands and push rim, and verified against motion capture. Five elite wheelchair racing athletes propelled at racing speeds on a treadmill. Excellent inter-rater Intraclass Correlation Coefficient values indicated high reliability and repeatability for both motion capture and IMU signal analysis approaches (R = 0.997, p < 0.001 and R = 0.990, p < 0.001, respectively). The best results were (as determined by the best between method agreement) were observed for IMUs located on the frame. Detection reliability was positively associated with signal-to-noise ratio of the acceleration data. The IMU assessment approach facilitates an automated processing capability, which is an improvement to the currently used video analysis.


Subject(s)
Accelerometry/instrumentation , Athletic Performance/physiology , Sports for Persons with Disabilities , Adolescent , Adult , Biomechanical Phenomena , Equipment Design , Female , Hand/physiology , Humans , Kinetics , Male , Time and Motion Studies , Wheelchairs , Young Adult
3.
Sports Biomech ; 20(8): 1001-1014, 2021 Dec.
Article in English | MEDLINE | ID: mdl-31354108

ABSTRACT

Due to the detrimental influence of unnecessary mass on performance, racing wheelchair instrumentation used in both competition assessment and research is currently limited. Attaining key kinetic parameters of propulsion can enhance technique and provide athletes with a competitive advantage. This research examined the plausibility of inertial measurement units (IMUs) to estimate propulsion forces, during a simulated wheelchair race start and training. Start propulsion data calculated from an IMU system was compared to reference force plate data; steady state motion data was compared with existing literature. Some agreement in kinetic parameters between IMU data was observed under steady state motion, with data from athletes following a linear force-velocity relationship. In this context, it is important to identify that this cannot be directly compared to the existing literature due to the different methods of force measurement and the lack of data for similar force measurements using IMUs. IMUs were ineffective when used with wheelchairs having spoked wheels. Performance was best for measurements in the direction of motion. Although exact agreement was not observed, the IMU can provide an effective tool in the in-field assessment of propulsion kinetics.


Subject(s)
Wheelchairs , Accelerometry , Athletes , Biomechanical Phenomena , Humans , Kinetics
4.
J Appl Biomech ; 35(5): 358­365, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31141441

ABSTRACT

For the wheelchair racing population, it is uncertain whether musculoskeletal models using the maximum isometric force generating capacity of non-athletic, able-bodied individuals, are appropriate, as few anthropometric parameters for wheelchair athletes are reported in the literature. In this study, a sensitivity analysis was performed in OpenSim, whereby the maximum isometric force generating capacity of muscles was adjusted in 25% increments to literature defined values between scaling factors of 0.25x to 4.0x for two elite athletes, at three speeds representative of race conditions. Convergence of the solution was used to assess the results. Artificially weakening a model presented unrealistic values, and artificially strengthening a model excessively (4.0x) demonstrated physiologically invalid muscle force values. The ideal scaling factors were 1.5x and 1.75x for each of the athletes, respectively, as was assessed through convergence of the solution. This was similar to the relative difference in limb masses between dual energy X-Ray absorptiometry (DXA) data and anthropometric data in the literature (1.49x and 1.70x), suggesting that DXA may be used to estimate the required scaling factors. The reliability of simulations for elite wheelchair racing athletes can be improved by appropriately increasing the maximum isometric force generating capacity of muscles.

5.
J Biomech Eng ; 141(10)2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31141594

ABSTRACT

The anthropometries of elite wheelchair racing athletes differ from the generic, able-bodied anthropometries commonly used in computational biomechanical simulations. The impact of using able-bodied parameters on the accuracy of simulations involving wheelchair racing is currently unknown. In this study, athlete-specific mass segment inertial parameters of the head and neck, torso, upper arm, forearm, hand, thigh, shank, and feet for five elite wheelchair athletes were calculated using dual-energy X-ray absorptiometry (DXA) scans. These were compared against commonly used anthropometrics parameters of data presented in the literature. A computational biomechanical simulation of wheelchair propulsion using the upper extremity dynamic model in opensim assessed the sensitivity of athlete-specific mass parameters using Kruskal-Wallis analysis and Spearman correlations. Substantial between-athlete body mass distribution variances (thigh mass between 7.8% and 22.4% total body mass) and between-limb asymmetries (<62.4% segment mass; 3.1 kg) were observed. Compared to nonathletic able-bodied anthropometric data, wheelchair racing athletes demonstrated greater mass in the upper extremities (up to 3.8% total body mass) and less in the lower extremities (up to 9.8% total body mass). Computational simulations were sensitive to individual body mass distribution, with joint torques increasing by up to 31.5% when the scaling of segment masses (measured or generic) differed by up to 2.3% total body mass. These data suggest that nonathletic, able-bodied mass segment inertial parameters are inappropriate for analyzing elite wheelchair racing motion.

6.
PLoS One ; 13(2): e0192935, 2018.
Article in English | MEDLINE | ID: mdl-29451923

ABSTRACT

There is a major gap in funding required for conservation, especially in low income countries. Given the significant contribution of taxpayers in industrialized countries to funding conservation overseas, and donations from membership organisation, understanding the preferences of ordinary people in a high income country for different attributes of conservation projects is valuable for future marketing of conservation. We conducted a discrete choice experiment with visitors to a UK zoo, while simultaneously conducting a revealed preference study through a real donation campaign on the same sample. Respondents showed the highest willingness to pay for projects that have local community involvement in management (95% confidence interval £9.82 to £15.83), and for improvement in threatened species populations (£2.97 - £13.87). Both of these were significantly larger than the willingness to pay for projects involving provision of alternative livelihoods, or improving the condition of conservation sites. Results of the simultaneous donation campaign showed that respondents were very willing to donate the suggested £1 or above donation (88% made a donation, n = 1798); there was no effect of which of the two campaigns they were exposed to (threatened species management or community involvement in management). The small number of people who did not make a donation had a higher stated willingness to pay within the choice experiment, which may suggest hypothetical bias. Conservationists increasingly argue that conservation should include local communities in management (for both pragmatic and moral reasons). It is heartening that potential conservation donors seem to agree.


Subject(s)
Choice Behavior , Community Participation/economics , Conservation of Natural Resources/economics , Developing Countries , Endangered Species/economics , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...