Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Res ; 1838: 148993, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38729334

ABSTRACT

Previous studies, using the Continuous Flash Suppression (CFS) paradigm, observed that (Western) university students are better able to detect otherwise invisible pictures of objects when they are presented with the corresponding spoken word shortly before the picture appears. Here we attempted to replicate this effect with non-Western university students in Goa (India). A second aim was to explore the performance of (non-Western) meditators practicing Sudarshan Kriya Yoga in Goa in the same task. Some previous literature suggests that meditators may excel in some tasks that tap visual attention, for example by exercising better endogenous and exogenous control of visual awareness than non-meditators. The present study replicated the finding that congruent spoken cue words lead to significantly higher detection sensitivity than incongruent cue words in non-Western university students. Our exploratory meditator group also showed this detection effect but both frequentist and Bayesian analyses suggest that the practice of meditation did not modulate it. Overall, our results provide further support for the notion that spoken words can activate low-level category-specific visual features that boost the basic capacity to detect the presence of a visual stimulus that has those features. Further research is required to conclusively test whether meditation can modulate visual detection abilities in CFS and similar tasks.


Subject(s)
Students , Yoga , Humans , Yoga/psychology , Male , Female , Young Adult , Adult , Students/psychology , Visual Perception/physiology , Attention/physiology , Photic Stimulation/methods , Speech Perception/physiology , Meditation/methods , Meditation/psychology , Cues , Adolescent
2.
Cereb Cortex ; 34(2)2024 01 31.
Article in English | MEDLINE | ID: mdl-38314589

ABSTRACT

Sentence comprehension is highly practiced and largely automatic, but this belies the complexity of the underlying processes. We used functional neuroimaging to investigate garden-path sentences that cause difficulty during comprehension, in order to unpack the different processes used to support sentence interpretation. By investigating garden-path and other types of sentences within the same individuals, we functionally profiled different regions within the temporal and frontal cortices in the left hemisphere. The results revealed that different aspects of comprehension difficulty are handled by left posterior temporal, left anterior temporal, ventral left frontal, and dorsal left frontal cortices. The functional profiles of these regions likely lie along a spectrum of specificity to generality, including language-specific processing of linguistic representations, more general conflict resolution processes operating over linguistic representations, and processes for handling difficulty in general. These findings suggest that difficulty is not unitary and that there is a role for a variety of linguistic and non-linguistic processes in supporting comprehension.


Subject(s)
Comprehension , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Language , Linguistics , Functional Neuroimaging , Brain Mapping
3.
J Neurosci ; 43(24): 4461-4469, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37208175

ABSTRACT

Neural oscillations are thought to support speech and language processing. They may not only inherit acoustic rhythms, but might also impose endogenous rhythms onto processing. In support of this, we here report that human (both male and female) eye movements during naturalistic reading exhibit rhythmic patterns that show frequency-selective coherence with the EEG, in the absence of any stimulation rhythm. Periodicity was observed in two distinct frequency bands: First, word-locked saccades at 4-5 Hz display coherence with whole-head theta-band activity. Second, fixation durations fluctuate rhythmically at ∼1 Hz, in coherence with occipital delta-band activity. This latter effect was additionally phase-locked to sentence endings, suggesting a relationship with the formation of multi-word chunks. Together, eye movements during reading contain rhythmic patterns that occur in synchrony with oscillatory brain activity. This suggests that linguistic processing imposes preferred processing time scales onto reading, largely independent of actual physical rhythms in the stimulus.SIGNIFICANCE STATEMENT The sampling, grouping, and transmission of information are supported by rhythmic brain activity, so-called neural oscillations. In addition to sampling external stimuli, such rhythms may also be endogenous, affecting processing from the inside out. In particular, endogenous rhythms may impose their pace onto language processing. Studying this is challenging because speech contains physical rhythms that mask endogenous activity. To overcome this challenge, we turned to naturalistic reading, where text does not require the reader to sample in a specific rhythm. We observed rhythmic patterns of eye movements that are synchronized to brain activity as recorded with EEG. This rhythmicity is not imposed by the external stimulus, which indicates that rhythmic brain activity may serve as a pacemaker for language processing.


Subject(s)
Eye-Tracking Technology , Reading , Male , Humans , Female , Electroencephalography , Periodicity , Language
4.
J Neurosci ; 43(20): 3718-3732, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37059462

ABSTRACT

Brain oscillations are prevalent in all species and are involved in numerous perceptual operations. α oscillations are thought to facilitate processing through the inhibition of task-irrelevant networks, while ß oscillations are linked to the putative reactivation of content representations. Can the proposed functional role of α and ß oscillations be generalized from low-level operations to higher-level cognitive processes? Here we address this question focusing on naturalistic spoken language comprehension. Twenty-two (18 female) Dutch native speakers listened to stories in Dutch and French while MEG was recorded. We used dependency parsing to identify three dependency states at each word: the number of (1) newly opened dependencies, (2) dependencies that remained open, and (3) resolved dependencies. We then constructed forward models to predict α and ß power from the dependency features. Results showed that dependency features predict α and ß power in language-related regions beyond low-level linguistic features. Left temporal, fundamental language regions are involved in language comprehension in α, while frontal and parietal, higher-order language regions, and motor regions are involved in ß. Critically, α- and ß-band dynamics seem to subserve language comprehension tapping into syntactic structure building and semantic composition by providing low-level mechanistic operations for inhibition and reactivation processes. Because of the temporal similarity of the α-ß responses, their potential functional dissociation remains to be elucidated. Overall, this study sheds light on the role of α and ß oscillations during naturalistic spoken language comprehension, providing evidence for the generalizability of these dynamics from perceptual to complex linguistic processes.SIGNIFICANCE STATEMENT It remains unclear whether the proposed functional role of α and ß oscillations in perceptual and motor function is generalizable to higher-level cognitive processes, such as spoken language comprehension. We found that syntactic features predict α and ß power in language-related regions beyond low-level linguistic features when listening to naturalistic speech in a known language. We offer experimental findings that integrate a neuroscientific framework on the role of brain oscillations as "building blocks" with spoken language comprehension. This supports the view of a domain-general role of oscillations across the hierarchy of cognitive functions, from low-level sensory operations to abstract linguistic processes.


Subject(s)
Comprehension , Speech Perception , Female , Humans , Comprehension/physiology , Magnetoencephalography , Brain/physiology , Language , Linguistics , Brain Mapping/methods , Speech Perception/physiology
5.
Neuropsychologia ; 155: 107754, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33476626

ABSTRACT

The possibility to combine smaller units of meaning (e.g., words) to create new and more complex meanings (e.g., phrases and sentences) is a fundamental feature of human language. In the present project, we investigated how the brain supports the semantic and syntactic composition of two-word adjective-noun phrases in Dutch, using magnetoencephalography (MEG). The present investigation followed up on previous studies reporting a composition effect in the left anterior temporal lobe (LATL) when comparing neural activity at nouns combined with adjectives, as opposed to nouns in a non-compositional context. The first aim of the present study was to investigate whether this effect, as well as its modulation by noun specificity and adjective class, can also be observed in Dutch. A second aim was to investigate to what extent these effects may be driven by syntactic composition rather than primarily by semantic composition as was previously proposed. To this end, a novel condition was administered in which participants saw nouns combined with pseudowords lacking meaning but agreeing with the nouns in terms of grammatical gender, as real adjectives would. We failed to observe a composition effect or its modulation in both a confirmatory analysis (focused on the cortical region and time-window where it has previously been reported) and in exploratory analyses (where we tested multiple regions and an extended potential time-window of the effect). A syntactically driven composition effect was also not observed in our data. We do, however, successfully observe an independent, previously reported effect on single word processing in our data, confirming that our MEG data processing pipeline does meaningfully capture language processing activity by the brain. The failure to observe the composition effect in LATL is surprising given that it has been previously reported in multiple studies. Reviewing all previous studies investigating this effect, we propose that materials and a task involving imagery might be necessary for this effect to be observed. In addition, we identified substantial variability in the regions of interest analyzed in previous studies, which warrants additional checks of robustness of the effect. Further research should identify limits and conditions under which this effect can be observed. The failure to observe specifically a syntactic composition effect in such minimal phrases is less surprising given that it has not been previously reported in MEG data.


Subject(s)
Language , Semantics , Brain Mapping , Comprehension , Humans , Magnetoencephalography
6.
J Cogn Neurosci ; 32(5): 747-761, 2020 05.
Article in English | MEDLINE | ID: mdl-31851593

ABSTRACT

There is a range of variability in the speed with which a single speaker will produce the same word from one instance to another. Individual differences studies have shown that the speed of production and the ability to maintain attention are related. This study investigated whether fluctuations in production latencies can be explained by spontaneous fluctuations in speakers' attention just prior to initiating speech planning. A relationship between individuals' incidental attentional state and response performance is well attested in visual perception, with lower prestimulus alpha power associated with faster manual responses. Alpha is thought to have an inhibitory function: Low alpha power suggests less inhibition of a specific brain region, whereas high alpha power suggests more inhibition. Does the same relationship hold for cognitively demanding tasks such as word production? In this study, participants named pictures while EEG was recorded, with alpha power taken to index an individual's momentary attentional state. Participants' level of alpha power just prior to picture presentation and just prior to speech onset predicted subsequent naming latencies. Specifically, higher alpha power in the motor system resulted in faster speech initiation. Our results suggest that one index of a lapse of attention during speaking is reduced inhibition of motor-cortical regions: Decreased motor-cortical alpha power indicates reduced inhibition of this area while early stages of production planning unfold, which leads to increased interference from motor-cortical signals and longer naming latencies. This study shows that the language production system is not impermeable to the influence of attention.


Subject(s)
Alpha Rhythm/physiology , Attention/physiology , Motor Cortex/physiology , Neural Inhibition/physiology , Pattern Recognition, Visual/physiology , Reaction Time/physiology , Speech/physiology , Adult , Female , Humans , Male , Psycholinguistics , Young Adult
7.
Front Hum Neurosci ; 10: 85, 2016.
Article in English | MEDLINE | ID: mdl-26973500

ABSTRACT

Oscillatory neural dynamics have been steadily receiving more attention as a robust and temporally precise signature of network activity related to language processing. We have recently proposed that oscillatory dynamics in the beta and gamma frequency ranges measured during sentence-level comprehension might be best explained from a predictive coding perspective. Under our proposal we related beta oscillations to both the maintenance/change of the neural network configuration responsible for the construction and representation of sentence-level meaning, and to top-down predictions about upcoming linguistic input based on that sentence-level meaning. Here we zoom in on these particular aspects of our proposal, and discuss both old and new supporting evidence. Finally, we present some preliminary magnetoencephalography data from an experiment comparing Dutch subject- and object-relative clauses that was specifically designed to test our predictive coding framework. Initial results support the first of the two suggested roles for beta oscillations in sentence-level language comprehension.

8.
Cortex ; 68: 155-68, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25840879

ABSTRACT

There is a growing literature investigating the relationship between oscillatory neural dynamics measured using electroencephalography (EEG) and/or magnetoencephalography (MEG), and sentence-level language comprehension. Recent proposals have suggested a strong link between predictive coding accounts of the hierarchical flow of information in the brain, and oscillatory neural dynamics in the beta and gamma frequency ranges. We propose that findings relating beta and gamma oscillations to sentence-level language comprehension might be unified under such a predictive coding account. Our suggestion is that oscillatory activity in the beta frequency range may reflect both the active maintenance of the current network configuration responsible for representing the sentence-level meaning under construction, and the top-down propagation of predictions to hierarchically lower processing levels based on that representation. In addition, we suggest that oscillatory activity in the low and middle gamma range reflect the matching of top-down predictions with bottom-up linguistic input, while evoked high gamma might reflect the propagation of bottom-up prediction errors to higher levels of the processing hierarchy. We also discuss some of the implications of this predictive coding framework, and we outline ideas for how these might be tested experimentally.


Subject(s)
Anticipation, Psychological/physiology , Comprehension/physiology , Beta Rhythm , Electroencephalography , Gamma Rhythm , Humans , Nerve Net/physiology , Speech Perception/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...