Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Stem Cells ; 34(9): 2429-42, 2016 09.
Article in English | MEDLINE | ID: mdl-27299362

ABSTRACT

We have previously demonstrated that cryopreservation and thawing lead to altered Mesenchymal stromal cells (MSC) functionalities. Here, we further analyzed MSC's fitness post freeze-thaw. We have observed that thawed MSC can suppress T-cell proliferation when separated from them by transwell membrane and the effect is lost in a MSC:T-cell coculture system. Unlike actively growing MSCs, thawed MSCs were lysed upon coculture with activated autologous Peripheral Blood Mononuclear Cells (PBMCs) and the lysing effect was further enhanced with allogeneic PBMCs. The use of DMSO-free cryoprotectants or substitution of Human Serum Albumin (HSA) with human platelet lysate in freezing media and use of autophagy or caspase inhibitors did not prevent thaw defects. We tested the hypothesis that IFNγ prelicensing before cryobanking can enhance MSC fitness post thaw. Post thawing, IFNγ licensed MSCs inhibit T cell proliferation as well as fresh MSCs and this effect can be blocked by 1-methyl Tryptophan, an Indoleamine 2,3-dioxygenase (IDO) inhibitor. In addition, IFNγ prelicensed thawed MSCs inhibit the degranulation of cytotoxic T cells while IFNγ unlicensed thawed MSCs failed to do so. However, IFNγ prelicensed thawed MSCs do not deploy lung tropism in vivo following intravenous injection as well as fresh MSCs suggesting that IFNγ prelicensing does not fully rescue thaw-induced lung homing defect. We identified reversible and irreversible cryoinjury mechanisms that result in susceptibility to host T-cell cytolysis and affect MSC's cell survival and tissue distribution. The susceptibility of MSC to negative effects of cryopreservation and the potential to mitigate the effects with IFNγ prelicensing may inform strategies to enhance the therapeutic efficacy of MSC in clinical use. Stem Cells 2016;34:2429-2442.


Subject(s)
Apoptosis , Cryopreservation , Interferon-gamma/pharmacology , Mesenchymal Stem Cells/cytology , T-Lymphocytes/cytology , Animals , Autophagy/drug effects , Caspases/metabolism , Cell Communication/drug effects , Cell Degranulation/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Freezing , Heat-Shock Response/drug effects , Humans , Immunosuppression Therapy , Lung/pathology , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mice, Inbred C57BL , Polymerization , T-Lymphocytes, Cytotoxic/cytology , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/physiology
2.
J Allergy Clin Immunol ; 135(6): 1511-8.e6, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25649082

ABSTRACT

BACKGROUND: Eczema vaccinatum is a life-threatening complication of smallpox vaccination in patients with atopic dermatitis (AD) characterized by dissemination of vaccinia virus (VV) in the skin and internal organs. Mutations in the filaggrin (FLG) gene, the most common genetic risk factor for AD, confer a greater risk for eczema herpeticum in patients with AD, suggesting that it impairs the response to cutaneous viral infections. OBJECTIVE: We sought to determine the effects of FLG deficiency on the response of mice to cutaneous VV inoculation. METHODS: VV was inoculated by means of scarification of unsensitized skin or skin topically sensitized with ovalbumin in FLG-deficient flaky tail (ft/ft) mice or wild-type (WT) control mice. The sizes of primary and satellite skin lesions were measured, and hematoxylin and eosin staining was performed. VV genome copy numbers and cytokine mRNA levels were measured by using quantitative PCR. RESULTS: VV inoculation in unsensitized skin of ft/ft mice, independent of the matted hair mutation, resulted in larger primary lesions, more abundant satellite lesions, heavier viral loads in internal organs, greater epidermal thickness, dermal cellular infiltration, and higher local Il17a, Il4, Il13, and Ifng mRNA levels than in WT control mice. VV inoculation at sites of topical ovalbumin application amplified all of these features in ft/ft mice but had no detectable effect in WT control mice. The number of satellite lesions and the viral loads in internal organs after cutaneous VV inoculation were significantly reduced in both unsensitized and topically sensitized ft/ftxIl17a(-/-) mice. CONCLUSION: FLG deficiency predisposes to eczema vaccinatum. This is mediated primarily through production of IL-17A.


Subject(s)
Dermatitis, Atopic/immunology , Genome, Viral , Interleukin-17/immunology , Intermediate Filament Proteins/immunology , Kaposi Varicelliform Eruption/immunology , Vaccinia virus/immunology , Animals , Dermatitis, Atopic/genetics , Dermatitis, Atopic/pathology , Dermatitis, Atopic/virology , Disease Progression , Female , Filaggrin Proteins , Gene Expression , Humans , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-13/genetics , Interleukin-13/immunology , Interleukin-17/deficiency , Interleukin-17/genetics , Interleukin-4/genetics , Interleukin-4/immunology , Intermediate Filament Proteins/deficiency , Intermediate Filament Proteins/genetics , Kaposi Varicelliform Eruption/genetics , Kaposi Varicelliform Eruption/pathology , Kaposi Varicelliform Eruption/virology , Male , Mice , Mice, Knockout , Ovalbumin/administration & dosage , RNA, Messenger/genetics , RNA, Messenger/immunology , Skin/immunology , Skin/pathology , Skin/virology , Vaccinia virus/genetics
3.
J Allergy Clin Immunol ; 131(2): 451-60.e1-6, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23374269

ABSTRACT

BACKGROUND: Sensitization to food antigen can occur through cutaneous exposure. OBJECTIVE: We sought to test the hypothesis that epicutaneous sensitization with food antigen predisposes to IgE-mediated anaphylaxis on oral allergen challenge. METHODS: BALB/c mice were epicutaneously sensitized by repeated application of ovalbumin (OVA) to tape-stripped skin over 7 weeks or orally immunized with OVA and cholera toxin (CT) weekly for 8 weeks and then orally challenged with OVA. Body temperature was monitored, and serum mouse mast cell protease 1 levels were determined after challenge. Tissue mast cell (MC) counts were examined by using chloroacetate esterase staining. Levels of serum OVA-specific IgE and IgG(1) antibodies and cytokines in supernatants of OVA-stimulated splenocytes were measured by means of ELISA. Serum IL-4 levels were measured by using an in vivo cytokine capture assay. RESULTS: Epicutaneously sensitized mice exhibited expansion of connective tissue MCs in the jejunum, increased serum IL-4 levels, and systemic anaphylaxis after oral challenge, as evidenced by decreased body temperature and increased serum mouse mast cell protease 1 levels. Intestinal MC expansion and anaphylaxis were IgE dependent because they did not occur in epicutaneously sensitized IgE(-/-) mice. Mice orally immunized with OVA plus CT did not have increased serum IL-4 levels, expanded intestinal MCs, or anaphylaxis after oral challenge, despite OVA-specific IgE levels and splenocyte cytokine production in response to OVA stimulation, which were comparable with those of epicutaneously sensitized mice. CONCLUSION: Epicutaneously sensitized mice, but not mice orally immunized with antigen plus CT, have expansion of intestinal MCs and IgE-mediated anaphylaxis after single oral antigen challenge. IgE is necessary but not sufficient for food anaphylaxis, and MC expansion in the gut can play an important role in the development of anaphylaxis.


Subject(s)
Anaphylaxis/immunology , Food Hypersensitivity/immunology , Immunoglobulin E/immunology , Jejunum/immunology , Mast Cells/immunology , Skin/immunology , Administration, Cutaneous , Allergens/immunology , Animals , Antibodies/immunology , Antigens/immunology , Body Temperature/immunology , Chemokine CCL2/immunology , Cholera Toxin/immunology , Immunoglobulin G/immunology , Interleukin-4/immunology , Mice , Mice, Inbred BALB C , Ovalbumin/immunology
4.
Proc Natl Acad Sci U S A ; 109(13): 4992-7, 2012 Mar 27.
Article in English | MEDLINE | ID: mdl-22416124

ABSTRACT

Atopic dermatitis (AD) skin lesions exhibit epidermal and dermal thickening, eosinophil infiltration, and increased levels of the cysteinyl leukotriene (cys-LT) leukotriene C(4) (LTC(4)). Epicutaneous sensitization with ovalbumin of WT mice but not ΔdblGATA mice, the latter of which lack eosinophils, caused skin thickening, collagen deposition, and increased mRNA expression of the cys-LT generating enzyme LTC(4) synthase (LTC(4)S). Skin thickening and collagen deposition were significantly reduced in ovalbumin-sensitized skin of LTC(4)S-deficient and type 2 cys-LT receptor (CysLT(2)R)-deficient mice but not type 1 cys-LT receptor (CysLT(1)R)-deficient mice. Adoptive transfer of bone marrow-derived eosinophils from WT but not LTC(4)S-deficient mice restored skin thickening and collagen deposition in epicutaneous-sensitized skin of ΔdblGATA recipients. LTC(4) stimulation caused increased collagen synthesis by human skin fibroblasts, which was blocked by CysLT(2)R antagonism but not CysLT(1)R antagonism. Furthermore, LTC(4) stimulated skin fibroblasts to secrete factors that elicit keratinocyte proliferation. These findings establish a role for eosinophil-derived cys-LTs and the CysLT(2)R in the hyperkeratosis and fibrosis of allergic skin inflammation. Strategies that block eosinophil infiltration, cys-LT production, or the CysLT(2)R might be useful in the treatment of AD.


Subject(s)
Dermatitis, Atopic/pathology , Eosinophils/metabolism , Leukotriene C4/metabolism , Receptors, Leukotriene/metabolism , Signal Transduction , Skin/immunology , Skin/pathology , Adoptive Transfer , Animals , Cell Proliferation , Collagen/metabolism , Dermatitis, Atopic/complications , Dermatitis, Atopic/immunology , Dermis/immunology , Dermis/pathology , Disease Models, Animal , Eosinophils/enzymology , Fibrosis , GATA Transcription Factors/metabolism , Glutathione Transferase/deficiency , Glutathione Transferase/metabolism , Humans , Immunization , Keratinocytes/immunology , Keratinocytes/pathology , Mice , Ovalbumin/immunology , Skin/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...