Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
BMC Biol ; 22(1): 149, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965504

ABSTRACT

BACKGROUND: Organisms frequently experience environmental stresses that occur in predictable patterns and combinations. For wild Saccharomyces cerevisiae yeast growing in natural environments, cells may experience high osmotic stress when they first enter broken fruit, followed by high ethanol levels during fermentation, and then finally high levels of oxidative stress resulting from respiration of ethanol. Yeast have adapted to these patterns by evolving sophisticated "cross protection" mechanisms, where mild 'primary' doses of one stress can enhance tolerance to severe doses of a different 'secondary' stress. For example, in many yeast strains, mild osmotic or mild ethanol stresses cross protect against severe oxidative stress, which likely reflects an anticipatory response important for high fitness in nature. RESULTS: During the course of genetic mapping studies aimed at understanding the mechanisms underlying natural variation in ethanol-induced cross protection against H2O2, we found that a key H2O2 scavenging enzyme, cytosolic catalase T (Ctt1p), was absolutely essential for cross protection in a wild oak strain. This suggested the absence of other compensatory mechanisms for acquiring H2O2 resistance in that strain background under those conditions. In this study, we found surprising heterogeneity across diverse yeast strains in whether CTT1 function was fully necessary for acquired H2O2 resistance. Some strains exhibited partial dispensability of CTT1 when ethanol and/or salt were used as mild stressors, suggesting that compensatory peroxidases may play a role in acquired stress resistance in certain genetic backgrounds. We leveraged global transcriptional responses to ethanol and salt stresses in strains with different levels of CTT1 dispensability, allowing us to identify possible regulators of these alternative peroxidases and acquired stress resistance in general. CONCLUSIONS: Ultimately, this study highlights how superficially similar traits can have different underlying molecular foundations and provides a framework for understanding the diversity and regulation of stress defense mechanisms.


Subject(s)
Hydrogen Peroxide , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/physiology , Saccharomyces cerevisiae/drug effects , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Ethanol/pharmacology , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Oxidative Stress/drug effects , Stress, Physiological/genetics , Stress, Physiological/drug effects , Osmotic Pressure , Catalase/metabolism , Catalase/genetics , Genetic Variation
2.
J Microbiol Biol Educ ; 25(1): e0002024, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38591892

ABSTRACT

As one of the most famous fermented drinks in the world, beer is an especially relatable topic for microbiology courses. Here, we describe a short and easily adaptable module based on the antibacterial properties of hops used in brewing. By the 15th century, beer recipes included hops (the flower of the Humulus lupulus plant) as a bittering agent and antimicrobial. By the 19th century, the highly hopped Indian Pale Ale (IPA) became popular, and a modern myth has emerged that IPAs were invented to survive long ocean voyages such as from Britain to India. With that myth in mind, we designed a hypothesis-driven microbiology lab module that tests the plausibility of this brewing myth-namely that highly hopped beers possess enough antibacterial activity to prevent spoilage, while lowly hopped beers do not. The overall design of the module is to test the antimicrobial properties of hops using petri plates containing varying concentrations of hop extract. The module includes hypothesis generation and testing related to bacterial physiology and cell envelope morphology (hops are not equally effective against Gram-positive and Gram-negative bacteria) and to mechanisms of antimicrobial resistance (as beer spoilage bacteria have repeatedly evolved hop resistance). Pre- and post-assessment showed that students made significant gains in the learning objectives for the module, which encourages critical thinking and hypothesis testing by linking microbial physiology and antimicrobial resistance to an important and topical real-world application.

3.
Mol Ecol ; 32(11): 2766-2783, 2023 06.
Article in English | MEDLINE | ID: mdl-36151935

ABSTRACT

The salinity gradient separating marine and freshwater environments is a major ecological divide, and the mechanisms by which most organisms adapt to new salinity environments are poorly understood. Diatoms are a lineage of ancestrally marine microalgae that have repeatedly colonized and diversified in freshwaters. Cyclotella cryptica is a euryhaline diatom found in salinities ranging from fully freshwater to fully marine, thus providing a powerful system for understanding the genomic mechanisms for mitigating and acclimating to low salinity. To understand how diatoms mitigate acute hypo-osmotic stress, we abruptly shifted C. cryptica from seawater to freshwater and performed transcriptional profiling during the first 10 h. Freshwater shock dramatically remodelled the transcriptome, with ~50% of the genome differentially expressed in at least one time point. The peak response occurred within 1 h, with strong repression of genes involved in cell growth and osmolyte production, and strong induction of specific stress defence genes. Transcripts largely returned to baseline levels within 4-10 h, with growth resuming shortly thereafter, suggesting that gene expression dynamics may be useful for predicting acclimation. Moreover, comparison to a transcriptomics study of C. cryptica following months-long acclimation to freshwater revealed little overlap between the genes and processes differentially expressed in cells exposed to acute stress versus fully acclimated conditions. Altogether, this study highlights the power of time-resolved transcriptomics to reveal fundamental insights into how cells dynamically respond to an acute environmental shift and provides new insights into how diatoms mitigate natural salinity fluctuations and have successfully diversified across freshwater habitats worldwide.


Subject(s)
Diatoms , Osmotic Pressure , Diatoms/genetics , Acclimatization/genetics , Gene Expression Profiling , Seawater , Fresh Water , Salinity
4.
Article in English | MEDLINE | ID: mdl-34594437

ABSTRACT

Microbial fermentation is a common form of metabolism that has been exploited by humans to great benefit. Industrial fermentation currently produces a myriad of products ranging from biofuels to pharmaceuticals. About one-third of the world's food is fermented, and the brewing of fermented beverages in particular has an ancient and storied history. Because fermentation is so intertwined with our daily lives, the topic is easily relatable to students interested in real-world applications for microbiology. Here, we describe the curriculum for a guided inquiry-based laboratory course that combines yeast molecular ecology and brewing. The rationale for the course is to compare commercial Saccharomyces cerevisiae yeast strains, which have been domesticated through thousands of generations of selection, with wild yeast, where there is growing interest in their potentially unique brewing characteristics. Because wild yeasts are so easy to isolate, identify, and characterize, this is a great opportunity to present key concepts in molecular ecology and genetics in a way that is relevant and accessible to students. We organized the course around three main modules: isolation and identification of wild yeast, phenotypic characterization of wild and commercial ale yeast strains, and scientific design of a brewing recipe and head-to-head comparison of the performance of a commercial and wild yeast strain in the brewing process. Pre- and postassessment showed that students made significant gains in the learning objectives for the course, and students enjoyed connecting microbiology to a real-world application.

5.
New Phytol ; 232(4): 1750-1764, 2021 11.
Article in English | MEDLINE | ID: mdl-34379807

ABSTRACT

Although most of the tens of thousands of diatom species are photoautotrophs, a small number of heterotrophic species no longer photosynthesize. We sequenced the genome of a nonphotosynthetic diatom, Nitzschia Nitz4, to determine how carbon metabolism was altered in the wake of this trophic shift. Nitzschia Nitz4 has retained its plastid and plastid genome, but changes associated with the transition to heterotrophy were cellular-wide and included losses of photosynthesis-related genes from the nuclear and plastid genomes, elimination of isoprenoid biosynthesis in the plastid, and remodeling of mitochondrial glycolysis to maximize adenosine triphosphte (ATP) yield. The genome contains a ß-ketoadipate pathway that may allow Nitzschia Nitz4 to metabolize lignin-derived compounds. Diatom plastids lack an oxidative pentose phosphate pathway (oPPP), leaving photosynthesis as the primary source of NADPH to support essential biosynthetic pathways in the plastid and, by extension, limiting available sources of NADPH in nonphotosynthetic plastids. The genome revealed similarities between nonphotosynthetic diatoms and apicomplexan parasites for provisioning NADPH in their plastids and highlighted the ancestral absence of a plastid oPPP as a potentially important constraint on loss of photosynthesis, a hypothesis supported by the higher frequency of transitions to parasitism or heterotrophy in lineages that have a plastid oPPP.


Subject(s)
Diatoms , Genome, Plastid , Diatoms/genetics , Heterotrophic Processes , Photosynthesis/genetics , Phylogeny , Plastids/genetics , Plastids/metabolism
6.
BMC Genomics ; 21(1): 249, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32197587

ABSTRACT

BACKGROUND: The increasing number of transcriptomic datasets has allowed for meta-analyses, which can be valuable due to their increased statistical power. However, meta-analyses can be confounded by so-called "batch effects," where technical variation across different batches of RNA-seq experiments can clearly produce spurious signals of differential expression and reduce our power to detect true differences. While batch effects can sometimes be accounted for, albeit with caveats, a better strategy is to understand their sources to better avoid them. In this study, we examined the effects of RNA isolation method as a possible source of batch effects in RNA-seq design. RESULTS: Based on the different chemistries of "classic" hot phenol extraction of RNA compared to common commercial RNA isolation kits, we hypothesized that specific mRNAs may be preferentially extracted depending upon method, which could masquerade as differential expression in downstream RNA-seq analyses. We tested this hypothesis using the Saccharomyces cerevisiae heat shock response as a well-validated environmental response. Comparing technical replicates that only differed in RNA isolation method, we found over one thousand transcripts that appeared "differentially" expressed when comparing hot phenol extraction with the two kits. Strikingly, transcripts with higher abundance in the phenol-extracted samples were enriched for membrane proteins, suggesting that indeed the chemistry of hot phenol extraction better solubilizes those species of mRNA. CONCLUSIONS: Within a self-contained experimental batch (e.g. control versus treatment), the method of RNA isolation had little effect on the ability to identify differentially expressed transcripts. However, we suggest that researchers performing meta-analyses across different experimental batches strongly consider the RNA isolation methods for each experiment.


Subject(s)
Chemical Fractionation/methods , RNA, Fungal/isolation & purification , Saccharomyces cerevisiae/genetics , Gene Expression Profiling , Gene Expression Regulation, Fungal , High-Throughput Nucleotide Sequencing , Phenol/chemistry , RNA, Fungal/antagonists & inhibitors , Research Design , Sequence Analysis, RNA
7.
J Proteome Res ; 19(3): 1183-1195, 2020 03 06.
Article in English | MEDLINE | ID: mdl-32027144

ABSTRACT

Cells respond to environmental perturbations and insults through modulating protein abundance and function. However, the majority of studies have focused on changes in RNA abundance because quantitative transcriptomics has historically been more facile than quantitative proteomics. Modern Orbitrap mass spectrometers now provide sensitive and deep proteome coverage, allowing direct, global quantification of not only protein abundance but also post-translational modifications (PTMs) that regulate protein activity. We implemented and validated using the well-characterized heat shock response of budding yeast, a tandem mass tagging (TMT), triple-stage mass spectrometry (MS3) strategy to measure global changes in the proteome during the yeast heat shock response over nine time points. We report that basic-pH, ultra-high performance liquid chromatography (UPLC) fractionation of tryptic peptides yields superfractions of minimal redundancy, a crucial requirement for deep coverage and quantification by subsequent LC-MS3. We quantified 2275 proteins across three biological replicates and found that differential expression peaked near 90 min following heat shock (with 868 differentially expressed proteins at 5% false discovery rate). The sensitivity of the approach also allowed us to detect changes in the relative abundance of ubiquitination and phosphorylation PTMs over time. Remarkably, relative quantification of post-translationally modified peptides revealed striking evidence of regulation of the heat shock response by protein PTMs. These data demonstrate that the high precision of TMT-MS3 enables peptide-level quantification of samples, which can reveal important regulation of protein abundance and regulatory PTMs under various experimental conditions.


Subject(s)
Proteome , Proteomics , Chromatography, Liquid , Heat-Shock Response , Mass Spectrometry
8.
mSphere ; 3(6)2018 11 28.
Article in English | MEDLINE | ID: mdl-30487155

ABSTRACT

All living organisms must recognize and respond to various environmental stresses throughout their lifetime. In natural environments, cells frequently encounter fluctuating concentrations of different stressors that can occur in combination or sequentially. Thus, the ability to anticipate an impending stress is likely ecologically relevant. One possible mechanism for anticipating future stress is acquired stress resistance, where cells preexposed to a mild sublethal dose of stress gain the ability to survive an otherwise lethal dose of stress. We have been leveraging wild strains of Saccharomyces cerevisiae to investigate natural variation in the yeast ethanol stress response and its role in acquired stress resistance. Here, we report that a wild vineyard isolate possesses ethanol-induced cross protection against severe concentrations of salt. Because this phenotype correlates with ethanol-dependent induction of the ENA genes, which encode sodium efflux pumps already associated with salt resistance, we hypothesized that variation in ENA expression was responsible for differences in acquired salt tolerance across strains. Surprisingly, we found that the ENA genes were completely dispensable for ethanol-induced survival of high salt concentrations in the wild vineyard strain. Instead, the ENA genes were necessary for the ability to resume growth on high concentrations of salt following a mild ethanol pretreatment. Surprisingly, this growth acclimation phenotype was also shared by the lab yeast strain despite lack of ENA induction under this condition. This study underscores that cross protection can affect both viability and growth through distinct mechanisms, both of which likely confer fitness effects that are ecologically relevant.IMPORTANCE Microbes in nature frequently experience "boom or bust" cycles of environmental stress. Thus, microbes that can anticipate the onset of stress would have an advantage. One way that microbes anticipate future stress is through acquired stress resistance, where cells exposed to a mild dose of one stress gain the ability to survive an otherwise lethal dose of a subsequent stress. In the budding yeast Saccharomyces cerevisiae, certain stressors can cross protect against high salt concentrations, though the mechanisms governing this acquired stress resistance are not well understood. In this study, we took advantage of wild yeast strains to understand the mechanism underlying ethanol-induced cross protection against high salt concentrations. We found that mild ethanol stress allows cells to resume growth on high salt, which involves a novel role for a well-studied salt transporter. Overall, this discovery highlights how leveraging natural variation can provide new insights into well-studied stress defense mechanisms.


Subject(s)
Anti-Infective Agents, Local/toxicity , Ethanol/toxicity , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/growth & development , Salt Tolerance , Stress, Physiological , Adaptation, Physiological , Gene Expression Regulation, Fungal , Microbial Viability/drug effects
9.
PLoS Genet ; 14(4): e1007335, 2018 04.
Article in English | MEDLINE | ID: mdl-29649251

ABSTRACT

Gene expression variation is extensive in nature, and is hypothesized to play a major role in shaping phenotypic diversity. However, connecting differences in gene expression across individuals to higher-order organismal traits is not trivial. In many cases, gene expression variation may be evolutionarily neutral, and in other cases expression variation may only affect phenotype under specific conditions. To understand connections between gene expression variation and stress defense phenotypes, we have been leveraging extensive natural variation in the gene expression response to acute ethanol in laboratory and wild Saccharomyces cerevisiae strains. Previous work found that the genetic architecture underlying these expression differences included dozens of "hotspot" loci that affected many transcripts in trans. In the present study, we provide new evidence that one of these expression QTL hotspot loci affects natural variation in one particular stress defense phenotype-ethanol-induced cross protection against severe doses of H2O2. A major causative polymorphism is in the heme-activated transcription factor Hap1p, which we show directly impacts cross protection, but not the basal H2O2 resistance of unstressed cells. This provides further support that distinct cellular mechanisms underlie basal and acquired stress resistance. We also show that Hap1p-dependent cross protection relies on novel regulation of cytosolic catalase T (Ctt1p) during ethanol stress in a wild oak strain. Because ethanol accumulation precedes aerobic respiration and accompanying reactive oxygen species formation, wild strains with the ability to anticipate impending oxidative stress would likely be at an advantage. This study highlights how strategically chosen traits that better correlate with gene expression changes can improve our power to identify novel connections between gene expression variation and higher-order organismal phenotypes.


Subject(s)
Gene Expression Regulation, Fungal/genetics , Genetic Variation , Quantitative Trait Loci/genetics , Saccharomyces cerevisiae/genetics , Catalase/genetics , Catalase/metabolism , Chromosome Mapping , Chromosomes, Fungal/genetics , Cross Protection/genetics , DNA-Binding Proteins/genetics , Drug Resistance, Fungal/genetics , Ethanol/pharmacology , Gene Expression Regulation, Fungal/drug effects , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Oxidants/metabolism , Oxidants/pharmacology , Peroxidase/genetics , Peroxidase/metabolism , Phenotype , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors/genetics
10.
BMC Microbiol ; 17(1): 29, 2017 Feb 03.
Article in English | MEDLINE | ID: mdl-28158975

ABSTRACT

BACKGROUND: Unconventional natural gas (UNG) extraction (fracking) is ongoing in 29 North American shale basins (20 states), with ~6000 wells found within the Fayetteville shale (north-central Arkansas). If the chemical signature of fracking is detectable in streams, it can be employed to bookmark potential impacts. We evaluated benthic biofilm community composition as a proxy for stream chemistry so as to segregate anthropogenic signatures in eight Arkansas River catchments. In doing so, we tested the hypothesis that fracking characteristics in study streams are statistically distinguishable from those produced by agriculture or urbanization. RESULTS: Four tributary catchments had UNG-wells significantly more dense and near to our sampling sites and were grouped as 'potentially-impacted catchment zones' (PICZ). Four others were characterized by significantly larger forested area with greater slope and elevation but reduced pasture, and were classified as 'minimally-impacted' (MICZ). Overall, 46 bacterial phyla/141 classes were identified, with 24 phyla (52%) and 54 classes (38%) across all samples. PICZ-sites were ecologically more variable than MICZ-sites, with significantly greater nutrient levels (total nitrogen, total phosphorous), and elevated Cyanobacteria as bioindicators that tracked these conditions. PICZ-sites also exhibited elevated conductance (a correlate of increased ion concentration) and depressed salt-intolerant Spartobacteria, suggesting the presence of brine as a fracking effect. Biofilm communities at PICZ-sites were significantly less variable than those at MICZ-sites. CONCLUSIONS: Study streams differed by Group according to morphology, land use, and water chemistry but not in biofilm community structure. Those at PICZ-sites covaried according to anthropogenic impact, and were qualitatively similar to communities found at sites disturbed by fracking. The hypothesis that fracking signatures in study streams are distinguishable from those produced by other anthropogenic effects was statistically rejected. Instead, alterations in biofilm community composition, as induced by fracking, may be less specific than initially predicted, and thus more easily confounded by agriculture and urbanization effects (among others). Study streams must be carefully categorized with regard to the magnitude and extent of anthropogenic impacts. They must also be segregated with statistical confidence (as herein) before fracking impacts are monitored.


Subject(s)
Biofilms , Environmental Monitoring , Hydraulic Fracking , Rivers/chemistry , Water Pollutants, Chemical/analysis , Agriculture , Arkansas , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Biodiversity , DNA, Bacterial , Ecology , Ecosystem , Geographic Mapping , Groundwater/chemistry , Groundwater/microbiology , Hydrology , Microbiota , Natural Gas , Nitrogen/analysis , Oil and Gas Industry , Phosphorous Acids/analysis , RNA, Ribosomal, 16S/genetics , Rivers/microbiology , Urbanization , Water Pollution
11.
Genome Biol Evol ; 6(9): 2557-66, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25364804

ABSTRACT

Lignocellulosic plant material is a viable source of biomass to produce alternative energy including ethanol and other biofuels. However, several factors­including toxic by products from biomass pretreatment and poor fermentation of xylose and other pentose sugars­currently limit the efficiency of microbial biofuel production. To begin to understand the genetic basis of desirable traits, we characterized three strains of Saccharomyces cerevisiae with robust growth in a pretreated lignocellulosic hydrolysate or tolerance to stress conditions relevant to industrial biofuel production, through genome and transcriptome sequencing analysis. All stress resistant strains were highly mosaic, suggesting that genetic admixture may contribute to novel allele combinations underlying these phenotypes. Strain-specific gene sets not found in the lab strain were functionally linked to the tolerances of particular strains. Furthermore,genes with signatures of evolutionary selection were enriched for functional categories important for stress resistance and included stress-responsive signaling factors. Comparison of the strains' transcriptomic responses to heat and ethanol treatment­two stresses relevant to industrial bioethanol production­pointed to physiological processes that were related to particular stress resistance profiles. Many of the genotype-by-environment expression responses occurred at targets of transcription factors with signatures of positive selection, suggesting that these strains have undergone positive selection for stress tolerance. Our results generate new insights into potential mechanisms of tolerance to stresses relevant to biofuel production, including ethanol and heat, present a backdrop for further engineering, and provide glimpses into the natural variation of stress tolerance in wild yeast strains.


Subject(s)
Ethanol/metabolism , Genome, Fungal , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Energy Metabolism , Fermentation , Genomics , Polymorphism, Single Nucleotide , Saccharomyces cerevisiae/growth & development
12.
Genetics ; 198(1): 369-82, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24970865

ABSTRACT

Natural variation in gene expression is pervasive within and between species, and it likely explains a significant fraction of phenotypic variation between individuals. Phenotypic variation in acute systemic responses can also be leveraged to reveal physiological differences in how individuals perceive and respond to environmental perturbations. We previously found extensive variation in the transcriptomic response to acute ethanol exposure in two wild isolates and a common laboratory strain of Saccharomyces cerevisiae. Many expression differences persisted across several modules of coregulated genes, implicating trans-acting systemic differences in ethanol sensing and/or response. Here, we conducted expression QTL mapping of the ethanol response in two strain crosses to identify the genetic basis for these differences. To understand systemic differences, we focused on "hotspot" loci that affect many transcripts in trans. Candidate causal regulators contained within hotspots implicate upstream regulators as well as downstream effectors of the ethanol response. Overlap in hotspot targets revealed additive genetic effects of trans-acting loci as well as "epi-hotspots," in which epistatic interactions between two loci affected the same suites of downstream targets. One epi-hotspot implicated interactions between Mkt1p and proteins linked to translational regulation, prompting us to show that Mkt1p localizes to P bodies upon ethanol stress in a strain-specific manner. Our results provide a glimpse into the genetic architecture underlying natural variation in a stress response and present new details on how yeast respond to ethanol stress.


Subject(s)
Ethanol/pharmacology , Genetic Variation , Saccharomyces cerevisiae/genetics , Transcriptome , Epistasis, Genetic , Ethanol/metabolism , Genome, Fungal , Quantitative Trait Loci , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics
13.
J Neuroeng Rehabil ; 11: 93, 2014 Jun 05.
Article in English | MEDLINE | ID: mdl-24902780

ABSTRACT

BACKGROUND: Cycling has been used in the rehabilitation of individuals with both chronic and post-surgical conditions. Among the challenges with implementing bicycling for rehabilitation is the recruitment of both extremities, in particular when one is weaker or less coordinated. Feedback embedded in virtual reality (VR) augmented cycling may serve to address the requirement for efficacious cycling; specifically recruitment of both extremities and exercising at a high intensity. METHODS: In this paper a mechatronic rehabilitation bicycling system with an interactive virtual environment, called Virtual Reality Augmented Cycling Kit (VRACK), is presented. Novel hardware components embedded with sensors were implemented on a stationary exercise bicycle to monitor physiological and biomechanical parameters of participants while immersing them in an augmented reality simulation providing the user with visual, auditory and haptic feedback. This modular and adaptable system attaches to commercially-available stationary bicycle systems and interfaces with a personal computer for simulation and data acquisition processes. The complete bicycle system includes: a) handle bars based on hydraulic pressure sensors; b) pedals that monitor pedal kinematics with an inertial measurement unit (IMU) and forces on the pedals while providing vibratory feedback; c) off the shelf electronics to monitor heart rate and d) customized software for rehabilitation. Bench testing for the handle and pedal systems is presented for calibration of the sensors detecting force and angle. RESULTS: The modular mechatronic kit for exercise bicycles was tested in bench testing and human tests. Bench tests performed on the sensorized handle bars and the instrumented pedals validated the measurement accuracy of these components. Rider tests with the VRACK system focused on the pedal system and successfully monitored kinetic and kinematic parameters of the rider's lower extremities. CONCLUSIONS: The VRACK system, a virtual reality mechatronic bicycle rehabilitation modular system was designed to convert most bicycles in virtual reality (VR) cycles. Preliminary testing of the augmented reality bicycle system was successful in demonstrating that a modular mechatronic kit can monitor and record kinetic and kinematic parameters of several riders.


Subject(s)
Bicycling , Equipment Design , Neurofeedback/instrumentation , Physical Therapy Modalities/instrumentation , User-Computer Interface , Adult , Biomechanical Phenomena/physiology , Computer Simulation , Humans , Software , Therapy, Computer-Assisted/instrumentation , Young Adult
14.
J Neurol Phys Ther ; 37(3): 118-24, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23863828

ABSTRACT

BACKGROUND AND PURPOSE: A virtual reality (VR) augmented cycling kit (VRACK) was developed to address motor control and fitness deficits of individuals with chronic stroke. In this article, we report on the safety, feasibility, and efficacy of using the VR augmented cycling kit to improve cardiorespiratory (CR) fitness of individuals in the chronic phase poststroke. METHODS: Four individuals with chronic stroke (47-65 years old and ≥3 years poststroke), with residual lower extremity impairments (Fugl-Meyer 24-26/34), who were limited community ambulators (gait speed range 0.56-1.1 m/s) participated in this study. Safety was defined as the absence of adverse events. Feasibility was measured using attendance, total exercise time, and "involvement" measured with the presence questionnaire (PQ). Efficacy of CR fitness was evaluated using a submaximal bicycle ergometer test before and after an 8-week training program. RESULTS: The intervention was safe and feasible with participants having 1 adverse event, 100% adherence, achieving between 90 and 125 minutes of cycling each week, and a mean PQ score of 39 (SD 3.3). There was a statistically significant (13%; P = 0.035) improvement in peak VO(2), with a range of 6% to 24.5%. DISCUSSION AND CONCLUSION: For these individuals, poststroke, VR augmented cycling, using their heart rate to set their avatar's speed, fostered training of sufficient duration and intensity to promote CR fitness. In addition, there was a transfer of training from the bicycle to walking endurance. VR augmented cycling may be an addition to the therapist's tools for concurrent training of mobility and health promotion of individuals poststroke.


Subject(s)
Bicycling/physiology , Physical Fitness/physiology , Stroke Rehabilitation , User-Computer Interface , Aged , Feasibility Studies , Female , Health Promotion , Humans , Male , Middle Aged , Stroke/physiopathology , Treatment Outcome
15.
G3 (Bethesda) ; 2(12): 1607-12, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23275883

ABSTRACT

The Crabtree effect, in which fermentative metabolism is preferred at the expense of respiration, is a hallmark of budding yeast's glucose response and a model for the Warburg effect in human tumors. While the glucose-responsive transcriptional repressors Mig1p and Mig2p play well-characterized roles in the Crabtree effect, little function for the related Mig3p transcription factor has been uncovered, despite numerous investigations of laboratory yeast strains. Here we studied a wild isolate of Saccharomyces cerevisiae to uncover a critical role for Mig3p that has been lost in S288c-derived laboratory strains. We found that Mig3p affects the expression of hundreds of glucose-responsive genes in the oak strain YPS163, both during growth under standard conditions and upon ethanol treatment. Our results suggest that Mig3p may act as a multifunctional activator/repressor that plays separate roles under standard vs. stress conditions and that this function has been largely lost in the lab strains. Population analysis suggests that the lab strain and several wild strains harbor mutations that diminish Mig3p function. Thus, by expanding our attention to multiple genetic backgrounds, we have uncovered an important missing link in a key metabolic response.


Subject(s)
Glucose/metabolism , Repressor Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acid Sequence , Ethanol/pharmacology , Gene Expression Regulation, Fungal/drug effects , Molecular Sequence Data , Repressor Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Sequence Alignment , Signal Transduction
16.
Genetics ; 186(4): 1197-205, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20855568

ABSTRACT

Ethanol production from lignocellulosic biomass holds promise as an alternative fuel. However, industrial stresses, including ethanol stress, limit microbial fermentation and thus prevent cost competitiveness with fossil fuels. To identify novel engineering targets for increased ethanol tolerance, we took advantage of natural diversity in wild Saccharomyces cerevisiae strains. We previously showed that an S288c-derived lab strain cannot acquire higher ethanol tolerance after a mild ethanol pretreatment, which is distinct from other stresses. Here, we measured acquired ethanol tolerance in a large panel of wild strains and show that most strains can acquire higher tolerance after pretreatment. We exploited this major phenotypic difference to address the mechanism of acquired ethanol tolerance, by comparing the global gene expression response to 5% ethanol in S288c and two wild strains. Hundreds of genes showed variation in ethanol-dependent gene expression across strains. Computational analysis identified several transcription factor modules and known coregulated genes as differentially expressed, implicating genetic variation in the ethanol signaling pathway. We used this information to identify genes required for acquisition of ethanol tolerance in wild strains, including new genes and processes not previously linked to ethanol tolerance, and four genes that increase ethanol tolerance when overexpressed. Our approach shows that comparative genomics across natural isolates can quickly identify genes for industrial engineering while expanding our understanding of natural diversity.


Subject(s)
Drug Tolerance/genetics , Ethanol/metabolism , Fermentation/genetics , Genes, Fungal/physiology , Genetic Variation , Saccharomyces cerevisiae/genetics , Ethanol/pharmacology , Gene Regulatory Networks , Genomics
17.
Res Microbiol ; 160(3): 179-86, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19284970

ABSTRACT

The tricarballylate utilization locus (tcuRABC) of Salmonella enterica serovar Typhimurium is comprised of a 3-gene operon (tcuABC) that encodes functions that allow this bacterium to use tricarballylate as a source of carbon and energy, and the tcuR gene, which encodes a putative LysR-type transcriptional regulator. In our studies, transcription of the tcuABC operon peaked at mid-log phase, and declined moderately during stationary phase. This pattern was not due to a change in the amount of TcuR in the cell, as tcuR expression did not change under the conditions tested, and TcuR did not control tcuR expression. Tricarballylate was the co-inducer. tcuABC expression was negatively affected by the cAMP receptor protein (Crp). Expression of tcuABC was one order of magnitude higher in a crp mutant strain than in the crp(+) strain; derepression of tcuABC expression was also observed in a strain lacking adenylate cyclase (Cya). At present, it is unclear whether the effect of Crp is direct or indirect. Studies with molecular mimics of tricarballylate showed that the co-inducer site restricts binding of structural mimics that contain a hydroxyl group. Two classes of TcuR constitutive variants were isolated. Class I variants responded to tricarballylate, while Class II did not.


Subject(s)
Gene Expression Regulation, Bacterial , Metabolic Networks and Pathways/genetics , Operon , Salmonella typhimurium/physiology , Tricarboxylic Acids/metabolism , Adenylyl Cyclases/genetics , Adenylyl Cyclases/physiology , Bacterial Proteins/genetics , Bacterial Proteins/physiology , Cyclic AMP Receptor Protein/genetics , Cyclic AMP Receptor Protein/physiology , Gene Deletion , Gene Expression Profiling , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism
18.
J Bacteriol ; 191(7): 2069-76, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19136587

ABSTRACT

In Salmonella enterica, tricarballylate (Tcb) catabolism requires function of TcuB, a membrane-bound protein that contains [4Fe-4S] clusters and heme. TcuB transfers electrons from reduced flavin adenine dinucleotide in the Tcb dehydrogenase (TcuA) to electron acceptors in the membrane. We recently showed that functions needed to assemble [Fe-S] clusters (i.e., the iscRSUA-hscBA-fdx operon) compensate for the lack of ApbC during growth of an apbC strain on Tcb. ApbC had been linked to [Fe-S] cluster metabolism, and we showed that an apbC strain had decreased TcuB activity. Here we report findings that expand our understanding of the regulation of expression of the iscRSUA genes in Salmonella enterica. We investigated why low levels of glucose or other saccharides restored growth of an apbC strain on Tcb. Here we report the following findings. (i) A < or =1 mM concentration of glucose, fructose, ribose, or glycerol restores growth of an apbC strain on Tcb. (ii) The saccharide effect results in increased levels of TcuB activity. (iii) The saccharide effect depends on the global regulatory protein Cra. (iv) Putative Cra binding sites are present in the regulatory region of the iscRSUA operon. (v) Cra protein binds to all three sites in the iscRSUA promoter region in a concentration-dependent fashion. To our knowledge, this is the first report of the involvement of Cra in [Fe-S] cluster assembly.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Operon , Repressor Proteins/metabolism , Salmonella enterica/genetics , Tricarboxylic Acids/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Base Sequence , Binding Sites , Molecular Sequence Data , Promoter Regions, Genetic , Protein Binding , Repressor Proteins/chemistry , Repressor Proteins/genetics , Salmonella enterica/metabolism
19.
J Bacteriol ; 190(13): 4596-602, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18441067

ABSTRACT

Mutants of Salmonella enterica lacking apbC have nutritional and biochemical properties indicative of defects in [Fe-S] cluster metabolism. Here we show that apbC is required for S. enterica to use tricarballylate as a carbon and energy source. Tricarballylate catabolism requires three gene products, TcuA, TcuB, and TcuC. Of relevance to this work is the TcuB protein, which has two [4Fe-4S] clusters required for function, making it a logical target for the apbC effect. TcuB activity was 100-fold lower in an apbC mutant than in the isogenic apbC(+) strain. Genetic data show that derepression of the iscRSUA-hscAB-fdx-orf3 operon or overexpression of iscU from a plasmid compensates for the lack of ApbC during growth on tricarballylate. The studies described herein provide evidence that the scaffold protein IscU has a functional overlap with ApbC and that ApbC function is involved in the synthesis of active TcuB.


Subject(s)
Bacterial Proteins/metabolism , Iron-Sulfur Proteins/metabolism , Salmonella enterica/metabolism , Tricarboxylic Acids/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/physiology , Genetic Complementation Test , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/physiology , Mutation , Phenotype , Polymerase Chain Reaction , Salmonella enterica/genetics , Salmonella enterica/growth & development , Tricarboxylic Acids/chemistry
20.
Biochemistry ; 46(31): 9107-15, 2007 Aug 07.
Article in English | MEDLINE | ID: mdl-17630784

ABSTRACT

Tricarballylate, a citrate analogue, is considered the causative agent of grass tetany, a ruminant disease characterized by acute magnesium deficiency. Although the normal rumen flora cannot catabolize tricarballylate, the Gram-negative enterobacterium Salmonella enterica can. An operon dedicated to tricarballylate utilization (tcuABC) present in this organism encodes all functions required for tricarballylate catabolism. Tricarballylate is converted to the cis-aconitate in a single oxidative step catalyzed by the FAD-dependent tricarballylate dehydrogenase (TcuA) enzyme. We hypothesized that the uncharacterized TcuB protein was required to reoxidize the flavin cofactor in vivo. Here, we report the initial biochemical characterization of TcuB. TcuB is associated with the cell membrane and contains two 4Fe-4S clusters and heme. Site-directed mutagenesis of cysteinyl residues putatively required as ligands of the 4Fe-4S clusters completely inactivated TcuB function. TcuB greatly increased the Vmax of the TcuA reaction from 69 +/- 2 to 8200 +/- 470 nmol min-1 mg-1; the Km of TcuA for tricarballylate was unaffected. Inhibition of TcuB activity by an inhibitor of ubiquinone oxidation, 2,5-dibromo-3-methyl-6-isoproylbenzoquinone (DBMIB), implicated the quinone pool as the ultimate acceptor of electrons from FADH2. We propose a model for the electron flow from FADH2, to the 4Fe-4S clusters, to the heme, and finally to the quinone pool.


Subject(s)
Bacterial Proteins/metabolism , Iron-Sulfur Proteins/physiology , Oxidoreductases/metabolism , Salmonella enterica/metabolism , Tricarboxylic Acids/metabolism , Aconitic Acid/chemistry , Aconitic Acid/metabolism , Amino Acid Substitution , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Catalysis , Dithionite/chemistry , Dithionite/metabolism , Electrochemistry , Electron Spin Resonance Spectroscopy , Heme/chemistry , Heme/metabolism , Hydrogen-Ion Concentration , Iron-Sulfur Proteins/antagonists & inhibitors , Iron-Sulfur Proteins/chemistry , Kinetics , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Models, Biological , Molecular Weight , Oxidation-Reduction , Oxidoreductases/chemistry , Oxidoreductases/genetics , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Salmonella enterica/enzymology , Salmonella enterica/genetics , Spectrophotometry , Spectrophotometry, Ultraviolet , Sulfur/chemistry , Sulfur/metabolism , Temperature , Tricarboxylic Acids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...