Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 443(7108): 218-21, 2006 Sep 14.
Article in English | MEDLINE | ID: mdl-16957736

ABSTRACT

The insulin receptor is a phylogenetically ancient tyrosine kinase receptor found in organisms as primitive as cnidarians and insects. In higher organisms it is essential for glucose homeostasis, whereas the closely related insulin-like growth factor receptor (IGF-1R) is involved in normal growth and development. The insulin receptor is expressed in two isoforms, IR-A and IR-B; the former also functions as a high-affinity receptor for IGF-II and is implicated, along with IGF-1R, in malignant transformation. Here we present the crystal structure at 3.8 A resolution of the IR-A ectodomain dimer, complexed with four Fabs from the monoclonal antibodies 83-7 and 83-14 (ref. 4), grown in the presence of a fragment of an insulin mimetic peptide. The structure reveals the domain arrangement in the disulphide-linked ectodomain dimer, showing that the insulin receptor adopts a folded-over conformation that places the ligand-binding regions in juxtaposition. This arrangement is very different from previous models. It shows that the two L1 domains are on opposite sides of the dimer, too far apart to allow insulin to bind both L1 domains simultaneously as previously proposed. Instead, the structure implicates the carboxy-terminal surface of the first fibronectin type III domain as the second binding site involved in high-affinity binding.


Subject(s)
Protein Folding , Receptor, Insulin/chemistry , Receptor, Insulin/metabolism , Crystallography, X-Ray , Dimerization , Immunoglobulin Fab Fragments/immunology , Microscopy, Electron , Models, Molecular , Protein Structure, Quaternary , Protein Structure, Tertiary , Receptor, Insulin/immunology , Receptor, Insulin/ultrastructure
2.
J Forensic Sci ; 47(4): 757-72, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12136983

ABSTRACT

In order to increase the power of discrimination for human identification purposes, a nine-locus short tandem repeat (STR) multiplex, the GenePrint PowerPlex 2.1 system (PowerPlex 2.1) developed by Promega Corporation and a separate pentanucleotide-repeat locus, Penta D, were tested. This megaplex system includes the highly polymorphic loci FGA, TPOX, D8S1179, vWA, Penta E, D18S51, D21S11, TH01, and D3S1358 and may be used in combination with the eight-locus STR multiplex, the GenePrint PowerPlex 1.1 system (PowerPlex 1.1) that has been previously developed. Three of the loci, TPOX, TH01 and vWA, have been included in both systems for quality control purposes. As with PowerPlex 1.1, PowerPlex 2.1 is also based on a two-color detection of fluorescent-labeled DNA products amplified by polymerase chain reaction (PCR) and provides a valuable tool for accurate and rapid allele determination. The primer sequences used in the PowerPlex 2.1/Penta D system are also presented in this report. To meet the "Quality Assurance Standards for Forensic DNA Testing Laboratories" (FBI), we tested the efficiency and reproducibility of the PowerPlex 2.1/PentaD system by several validation studies that were conducted as a joint project among seven laboratories. Validation tests included concordance studies, sensitivity, and species specificity determination, as well as performance in forensic and environmentally impacted samples. The results produced from these tests demonstrated the consistency and reliability of the PowerPlex 2.1/Penta D system.


Subject(s)
DNA Fingerprinting/methods , Tandem Repeat Sequences/genetics , Animals , Bacteria , DNA Primers , Forensic Medicine/methods , Humans , Observer Variation , Polymerase Chain Reaction , Primates , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...